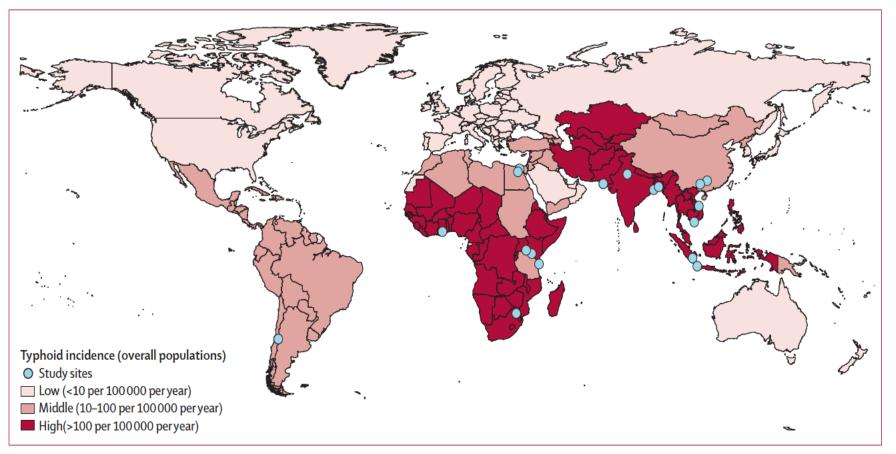


Overview of typhoid conjugate vaccine pipeline: current status

Sushant Sahastrabuddhe PIDSP, 2018 Manila, The Philippines 22nd Feb 2018

Outline of Presentation

- Burden of typhoid fever
- Currently available typhoid vaccines
- Typhoid conjugate vaccines:
 - US NIH Vi-rEPA
 - Bharat Vi-TT
 - Biomed Vi-TT
 - Zydus Vi-TT
 - Vi-CRM
 - IVI Vi-DT partners
- Candidate pipeline and status
- Path forward and issues


Typhoid Fever

- Systemic infection caused by S. Typhi which is transmitted via contaminated food or water
- Suspected outbreaks have been reported as early as 400BC
- The organism was isolated and cultured in 1880s and the diagnostic test (Widal) was developed in 1896
- First heat-inactivated vaccine was developed by 1897
- Still, in 2018, its causing >100,000 deaths

Global Burden of Typhoid Fever

- Ivanoff et al. (1994) 17 million cases and 600,000 deaths
- Crump et al. (2004) 21.6 million cases and 216,000 deaths
- Mogasale V et al (2014) 12 million cases and 129,000 deaths

Typhoid incidence in low-and middle-income countries (risk-adjusted for blood culture sensitivity. Mogasale et al. Lancet Global Health 2014

Typhoid vaccines currently recommended by WHO

	Vi polysaccharide vaccine (ViPS)	Ty21a vaccine
Type of vaccine	Subunit	Live attenuated
Composition	Purified Vi capsular polysaccharide (Ty2 S. Typhi strain)	Ty2 S. Typhi strain with chemically mutated genes
Route, Dose	IM 1 dose	Oral, 3-4 doses
Presentation	Liquid (25 ug Vi antigen in buffer solution per one dose of 0.5ml)	Capsule
Min. age of vaccination	2 yrs	5 yrs
Efficacy	55-72%	33-67%
Duration of protection	3 yrs	7 yrs
Safety/tolerability	High	High
PQ	Typhim Vi (2011)	No

Newer Typhoid Vaccines: subunit approach

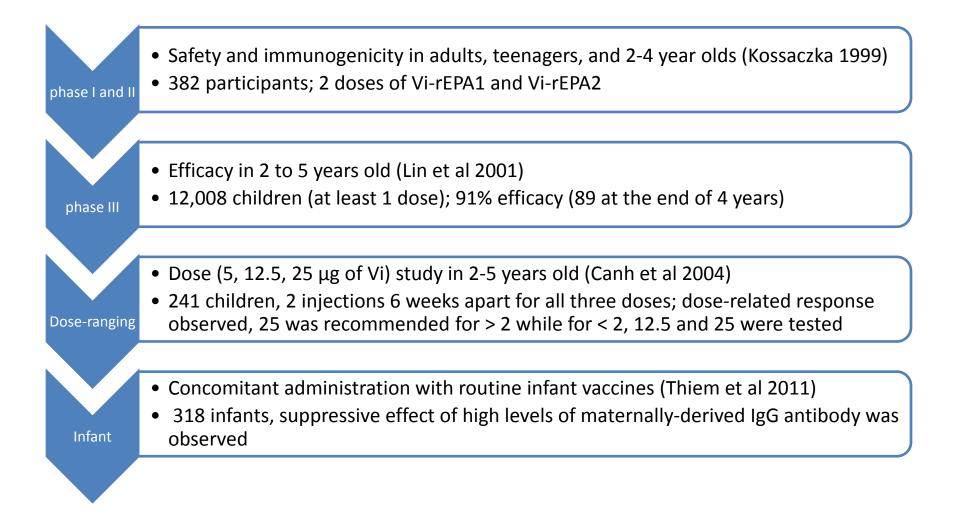
Issues with polysaccharide:

- T-cell independent: Poorly immunogenic in young children, No booster response
- Requires repeat dosing every 3 years
- Modestly immunogenic (55% at the end of 3 years)

Conjugation:

A process wherein a poorly immunogenic molecule (polysaccharide) is covalently bound to a carrier protein thereby increasing the immunogenicity of the final product and making it T-cell dependent.

Currently available polysaccharide-protein conjugate vaccines


- Pneumococcal vaccine:
 - Prevnar[®]
 - Synflorix[®]
 - Prevnar 13®
- Haemophilus influenzae type B vaccine:
 - ActHIB®
 - Hiberix®
 - PedvaxHIB®
 - All pentavalent vaccines have Hib conjugate
- Meningococcal vaccine:
 - Menveo®
 - Menactra®
 - Menafrivac[®]
- Typhoid vaccine:
 - Pedatyph[®] Typbar-TCV[®]

- Developed by US NIH (John Robbins and colleagues)
- Capsular polysaccharide of Salmonella typhi (Vi) was bound to the recombinant exoprotein A (rEPA) of Pseudomonas aeruginosa
- Have completed clinical evaluation in humans including in the target group (Infants)
- Proposed serologic correlates of protection (2 ug/ml) in 2-5 years old efficacy study

Vi-rEPA clinical trials

Efficacy of Vi-rEPA in 2-to-5 years old children who received 2 doses 6 weeks apart

Variable	Vaccine group	placebo group	Vaccine efficacy			
Active surveillance (0 to 2	7 month)					
No. of fully immunized	5525	5566				
No. of typhoid cases	4	47 🧲				
Attack rate (cases/1000/yr) 0.60	7.04	91.5 (77.1-96.6)			
Passive surveillance (27 to 46 month)						
No. remaining in study	5383	5420				
No. of typhoid cases	3	19				
Attack rate (cases/1000/yr)	0.362	2.34	82.4 (22.3-99.1)			
Active and Passive surveill	ance (0 to 46 month	n)				
No. of typhoid cases	7	66				
Attack rate (cases/1000/yr)	0.317	2.96	89.3 (76.0-96.9)			
Single dose (0 to 27 month)						
(N=771)	1	8	87.7 (65.1-96.8)			

Source: Dr Shousun Szu, NIH

Lin et al. The efficacy of a *Salmonella typhi* conjugate vaccine in two-to-fi ve-year-old children. NEJM 2001;344:1263-1269

- US NIH transferred the technology to Lanzhou Institute of Biological Products (LIBP), part of the China National Biologics Group (CNBG)
- LIBP conducted additional trials and have submitted for in-country licensure in China in 2013

Vi-TT (BBIL)

Clinical Infectious Diseases Advance Access published May 7, 2015

MAJOR ARTICLE

Controlled Trial

- 2-45 yrs
- n = 654 randomised to 2 arms
- Test Vaccine: Typbar-TCV[™]
 - 25 μg/0.5 ml Vi capsular polysaccharide TT conjugate vaccine
 - Single dose, I.M injection.
- Reference Vaccine: Typbar®
 - 25 μg/0.5 ml Vi capsular polysaccharide vaccine.
 - Single dose, I.M injection.

• Open Label Trial

- 6 m 2 yrs
- n = 32
- Immunogenicity end-points
 - geometric mean titers
 - 4-fold rise of anti-Vi IgG response 6 weeks post vaccination

Safety and Immunogenicity of a Vi Polysaccharide–Tetanus Toxoid Conjugate Vaccine (Typbar-TCV) in Healthy Infants, <u>Children, and Adults in Typhoid Endemic</u> Areas: A Multicenter, 2-Cohort, Open-Label, Double-Blind, Randomized Controlled Phase 3 Study

Vadrevu Krishna Mohan,¹ Vineeth Varanasi,¹ Anit Singh,¹ Marcela F. Paseti,² Myron M. Levine,² Ramasamy Venkatesan,¹ and Krishna M. Ella¹

¹Bharat Blotech International Limited, Hyderabad, Telangana, India; and ²Centre for Vaccine Development, University of Maryland School of Medicine, Baltimore

Background. Enteric fever caused by Salmonella Typhi remains a major public health problem in developing countries. Typbar-TCV is a single-dose typhoid Vi polysaccharide-tetanus toxoid conjugate vaccine for persons ≥ 6 months of age.

Methods. Six hundred fifty-four healthy subjects aged 2–45 years enrolled in a double-blind, randomized controlled trial (RCT) received a single dose of Typbar-TCV or comparator "Vi polysaccharide" (Typbar), and 327 healthy subjects aged 6–23 months received a single dose of Typbar-TCV in an open-label trial (OLT); both received single- or multidose presentations from different lots. After 2 years, subsets in each group received a booster dose. The primary objective included analysis of geometric mean titer (GMTs) and 4-fold rise of anti-Vi serum immunoglobulin G (IgG) enzyme-linked immunosorbent assay titers over baseline (seroconversion [SCN]) 42 days after immunization.

Results. Typbar-TCV recipients in the RCT attained higher anti-Vi IgG GMTs 42 days after immunization (SCN, 97%; GMT, 1293 [95% confidence interval [CI], 1153-1449]) than recipients of Typbar (SCN, 93%; GMT, 111 [95% CI, 359–471]) (*P* < .001). Typbar-TCV was highly immunogenic in the OLT (SCN, 98%; GMT, 1937 [95% CI, 1785–103]). Two years after vaccination, anti-Vi Itters remained higher in Typbar-TCV subjects (GMT, 82 [95% CI, 73–92]); and exhibited higher avidity (geometric mean avidity index [GMAI], 60%) than in Typbar recipients (GMT, 46 [95% CI, 40–53]; GMAI 46%) in the RCT (*P* < .001). OLT Typbar-TCV recipients achieved GMT of 48 (95% CI, 42–55) and GMAI of 57%. Typbar-TCV induced multiple IgG subclasses and strong booster responses in all ages. No serious vaccine-attributable adverse events were observed.

Conclusions. Single-dose Typbar-TCV is well tolerated and induces robust and long-lasting serum anti-Vi IgG across age groups.

Clinical Trials Registration. CTRI/2011/08/001957, CTRI/2014/01/004341.

Keywords. typhoid; conjugate vaccine; booster; persistence; avidity.

Received 21 January 2015; accepted 4 April 2015. Comportence Vinesh Viannai, MBBS, Mol, Bhant Bidtech International Limtes Genoma Valley, Hydersbad 50007, India (vinestd2:575@bhantbiotsch.com). **Dinical Intections Diseas m**[®] 07 The Anton 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All officies nerved. For Premissions, places e-mail:

journals.permissions@oup.com.

DOI: 10.1093/cid/civ295

Enteric fever caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A and B remains a public health problem among populations lacking treated drinking water and improved santiation in many developing countries [1–3]. In most

Vi-TT Conjugate Vaccine for Typhoid Fever • CID • 1

Vi-TT (BBIL)

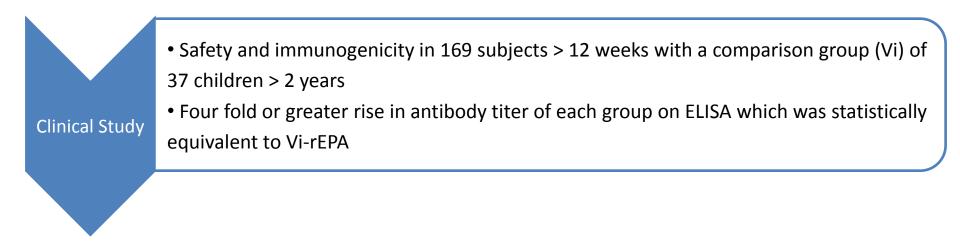
Table 3.Serum Immunoglobulin G Vi Antibody Responses Among Infants and Toddlers 6–23 Months of Age in the Open-Label Trial at Day42 After a Single Dose of Typbar-TCV Compared With Day 0

		Age Group		
Response	Time-point	6–23 mo	6–11 mo	12–23 mo
No. of subjects	Day 42	307	139	168
	Day 720	220	105	115
% Seroconversion (95% Cl) (>4-fold rise over day 0 baseline)	Day 42	98.1% (95.7–99.2)	97.8% (93.6–99.5)	98.2% (94.6-99.6)
	Day 720	59.5% (52.9-65.8)	59.0% (49.5-67.9)	60.0% (50.8-68.5)
GMT, EU/mL (95% CI)	Day 0	9.5 (8.7–10.3)	9.6 (8.4–10.9)	9.4 (8.3–10.5)
	Day 42	1937.4 (1785–2103)	1850.6 (1628–2104)	2012.4 (1811–2236)
	Day 720	48.3 (42–55)	45.3 (37–55)	50.9 (42-61)
Fold rise over baseline GMT	Day 42	205	193	215
	Day 720	5.17	5.1	5.24

Anti-Vi immunoglobulin G antibody titers estimated by VaccZyme enzyme-linked immunosorbent assay kit.

Abbreviations: CI, confidence interval; EU, enzyme-linked immunosorbent assay units; GMT, geometric mean titer.

- Approx 98% of children in both age groups seroconverted and achieved GMTs establishing protective levels of immunogenicity
- Antibody persistence: post single dose, children 6–23 mths had GMTs on day 720 >5-fold above baseline


- Licensed in India as a single dose vaccine 25ug in 2013 and has been prequalified by WHO in Dec 2017
- BBIL is also conducting additional studies on Typbar-TCV:
 - Oxford Vaccine Group human challenge study (results published;
 89% efficacy against severe disease in the naive British adults)
 - Co-admin with measles-containing vaccine (completed; no interference)
 - Post marketing surveillance (ongoing)

Vi-TT (Biomed)

Pedatyph [™] Biomed vaccine.

- Licensed for more than 3 months of age in 2008 in India.
- Single dose of 0.5 ml, followed by booster at 2.5 to 3 years age

Vi-TT (Biomed)

HUMAN VACCINES & IMMUNOTHERAPEUTICS 2016, VOL. 12, NO. 4, 939–945 http://dx.doi.org/10.1080/21645515.2015.1117715

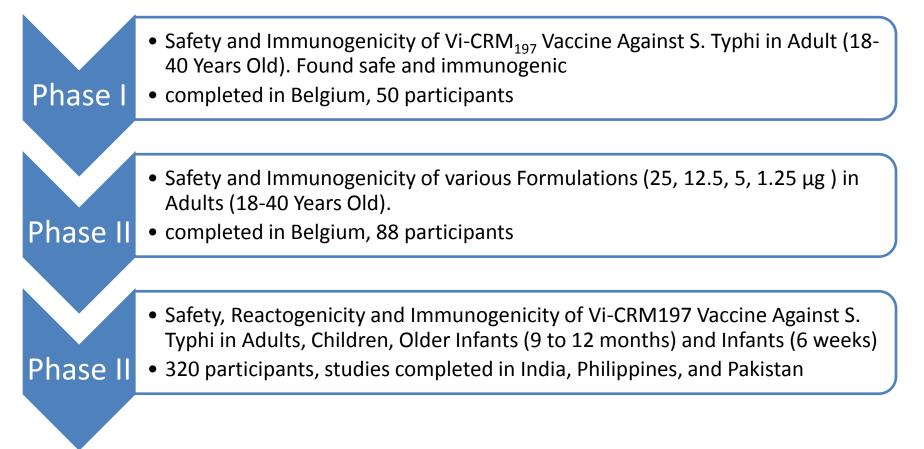
RESEARCH PAPER

Efficacy and safety of vi-tetanus toxoid conjugated typhoid vaccine (PedaTyph[™]) in Indian children: School based cluster randomized study

Monjori Mitra^a, Nitin Shah^b, Apurba Ghosh^a, Suparna Chatterjee^c, Iqbal Kaur^d, Nisha Bhattacharya^a, and Suparna Basu^a

^aInstitute of Child Health, Kolkata, India; ^bDepartment of Pediatrics, Lion's Tarachand Bapa Hospital, Sion West, Mumbai, India; ^cDepartment of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India; ^dDepartment of Microbiology, U.C.M.S, GTB Hospital, Delhi, India

- Effectiveness trial completed in Kolkata with 2000 children (6m to 12 years) http://ctri.nic.in/Clinicaltrials/showallp.php?mid1=4714&EncHid=&userName =Vi-TT
- 2 doses at 6 weeks interval in children 6 mths to 12 yrs
- Authors report 100% VE after 1 year of follow up
- No plans yet of WHO PQ application


Vi-TT (Zydus Cadila)

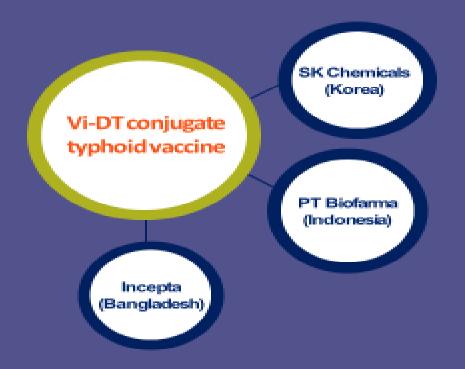
- Zydus cadila developed a typhoid conjugate vaccine using TT as the carrier protein
- Phase I was completed in India
- Phase II/ III with non-inferiority with Typbar-TCV[™] (238 participants in all age groups) completed at 7 sites in India
- After the non-inferiority study, dossier has been submitted to DCGI (Indian NRA) for marketing authorization in India
- Approved in India in Dec 2017
- Single dose 25ug from 6 months of age onwards

Vi-CRM₁₉₇ (GVGH)

- Developed by GSK Vaccines Institute for Global Health (GVGH, formerly NVGH)
- Have used CRM₁₉₇ as carrier protein
- CRM₁₉₇ is a non-toxic mutant of diphtheria toxin

Vi-CRM₁₉₇ (GVGH)

• In summary,


- Phase I and II in European adults → at least as immunogenic as ViPS (van Damme et al. PLoS One 2011)
- Phase II in adults, children and infants in India, Pakistan and the Philippines (coadmin: msls 9 m, pentavalent & OPV at 6, 10, 14 wks) (Bhutta et al. Lancet Infect Dis 2014)
- Anti-Vi IgG titers after 1 dose 5 μ g Vi >= ViPS 25 μ g (adults and children)
- Immunogenic in 6-8 wk and 9-12 m infants (in latter, immune response equal or greater than 1 dose ViPS in children and adults).
- Antibody titers short-lived (~ 6 m); apparent lack of booster response.
- Refurbished technology transferred to Biological E and undergoing full clinical development (Phase I will begin in India soon)

Vi-DT (IVI)

With the initial know-how from US NIH, IVI scientists developed the technology to adopt for developing country manufacturers

Technology transfer partners for TCV

Vi-DT: SK chemicals

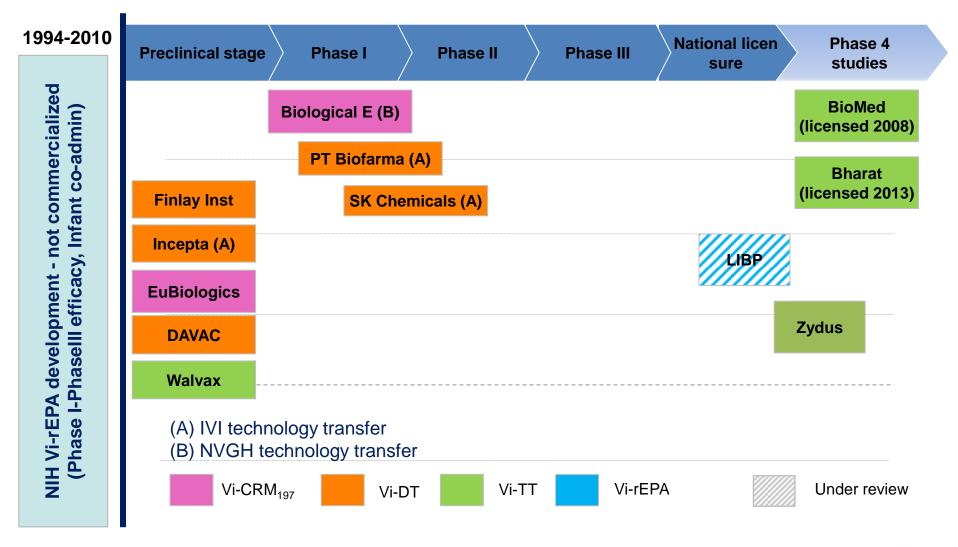
- Technology transfer completed in 2013
- Preclinical studies completed in 2015
- Phase I clinical trial completed in the Philippines

"A Randomized, Observer-Blinded, Phase I study to Assess the Safety and Immunogenicity of Vi-DT Conjugate Vaccine compared to Vi-Polysaccharide (Typhim Vi[®], Sanofi Pasteur) Typhoid Vaccine in Healthy Filipino Adults and Children"

- Phase I results are encouraging. There were no safety concerns and 100% seroconversion in the TCV group (96% in the Vi only group). The results will be published soon.
- Phase II study will start enrolling in the Philippines soon.
- Phase III preparations have started

Vi-DT: Additional manufacturers

Biofarma:


- Technology transfer completed in 2013
- Preclinical studies completed in 2015
- Phase I clinical trial has been completed in Jakarta, Indonesia and the results are encouraging
- Phase II preparations ongoing and IND will be submitted soon

Incepta:

- Technology transfer completed in 2014
- Scale-up has been done to 50 L scale and preclinical studies are planned to start soon

Typhoid conjugate vaccine pipeline

Typhoid conjugate vaccines: Issues

- Correlates of protection are not clearly established and approved by WHO
- There is no clinical efficacy trial conducted in children younger than 2 years of age. Data from human challenge studies can supplement this.
- The ELISA methods used by developers and manufacturers are not standardized (work ongoing at NIBSC to develop standard serum)
- Lack of clarity on the number of doses in the primary series and need and timing of the booster dose

Typhoid Endgame: Where are we?

- Strategy: Well-positioned with all the major organizations putting their weight behind TCVs: WHO, BMGF, Gavi, UNICEF
- Supply: There is a PQed vaccine available from a reputable company in India and few more are in pipeline
- Financing: Gavi has already approved the funding for TCV; huge uncertainty about Gavi non-eligible countries
- Implementation: Effectiveness studies ongoing in 4 countries; however, there will be major challenges in this area as most countries are struggling with manpower, infrastructure, and financial issues

Acknowledgements

International Vaccine

Institute

- Jerome Kim
- Julia Lynch
- Jean-Louis Excler
- Viliam Pavilak
- So Jun An
- Manki Song
- Yun Chon
- Deok Run Kim
- Ju Yeon Park
- Jae Seung Yang
- Samuel Teshome
- Tarun Saluja
- Yanghee Kim
- Jiwook Park
- Deok Ryun Kim
- Ju Yeon Park
- Yun-Ji Jang
- Eun Young Lee
- Sue-Kyoung Jo
- Soyoon Chang
- Eun-Ae Lee

Manufacturers

- SK Chemicals
- PT Biofarma
- Incepta vaccines
 limited
- Bharat Biotech Ltd.
- Biomed
- Zydus Cadila
- Biological E
- Lanzhou Institute of Biological Products
- Finlay Institute
- Walvax
- Eubiologics

BILL& MELINDA GATES foundation

- Anita Zaidi
- Duncan Steele
- Evan Sturtevant
- Lyou-Fu Ma
- Megan Carey
- Shauna Metschke
- Zoey Diaz

- Ivana Knezevic
- Insoo Shin
- Jinho Shin
- Adwoa Bentsi-Enchill
- Joachim Hombach
- Thomas Cherian

THANK YOU

