The Value of Vaccines

Jerome Kim, MD

IVI is a Vaccine R&D Center with a Global Health Mission

Vision: Developing countries free of suffering from infectious disease Mission: Discover, develop and deliver safe, effective and affordable vaccines for global public health

Global Vaccine Research Institute

- HQ and labs at Seoul National University
- Field programs in 29 countries: Asia, Africa, Latin America
- 12 nationalities in workforce of ~130

OECD-recognized Nonprofit International Organization

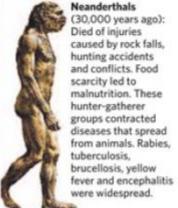
- **UNDP** initiative
- First international organization in Korea (1997)
- 35 countries and WHO as state parties

Outline

- Introduction: life expectancy and infectious mortality
- Why vaccines have value
- Vaccines as a work in progress
- Summary

Disclaimers: None

Use of vaccine images does not imply endorsement of any product.


Human life expectancy has increased, especially after the 19th C

LIFE EXPECTANCY THROUGH THE AGES

Early humans did not generally live long enough to develop heart disease, cancer or loss of mental function. A snapshot of how life expectancy has changed, and the big killers of each era:

AVERAGE LIFE EXPECTANCY

 30_{years}

RESEARCH BY RICK SZNAJDER/TORONTO STAR LIBRARY

38

Neolithic (8500 BC to 3500 BC): Agriculture, irrigation and urbanization brought problems associated with settled populations, such as fecal contamination of water and diseases such as cholera, smallpox, typhoid, polio and influenza. Malaria and other diseases carried by mosquitoes and insects, which fed on domesticated animals. appeared.

35 Classical Greece and Rome

(500 BC to 500 AD): Tuberculosis, typhoid fever, smallpox and scarlet fever spread among the denser urban populations. Malnutrition, gastroenteritis and violence were also big killers.

Medieval period (500 AD to 1500 AD):

Life expectancy grew with urbanization, but famine caused by crop failures and bubonic plague were the big killers. The Black Death (1347-1351) wiped out 25 million people in Europe and 60 million in Asia, returning several times, culminating in the Great Plague of London (1664-1666). By 1500, life expectancy had dropped back to 38.

40

Victorian (1850s to 1900): Typhus, typhoid fever, rickets, diphtheria, tuberculosis, scarlet fever and cholera raged in crowded cities.

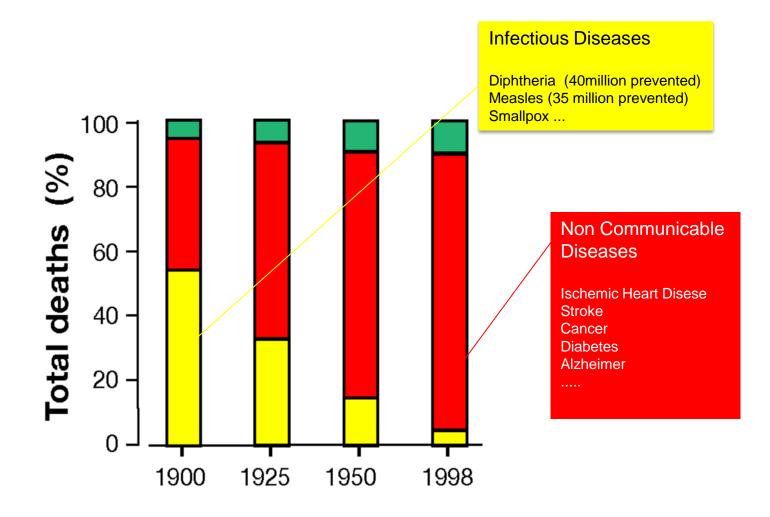
70


1900s: Better health care, sanitation and living conditions boosted life expectancy to 70 for men and 75 for women by 1950.

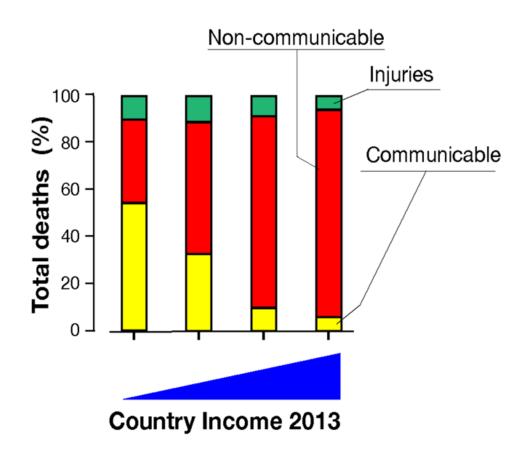
CANADA: MEN WOMEN

82 8

Today: Cancer, heart disease and stroke are the biggest killers in the developed world. Our longer lifespan also comes with unprecedented loss of mental function and mobility problems.

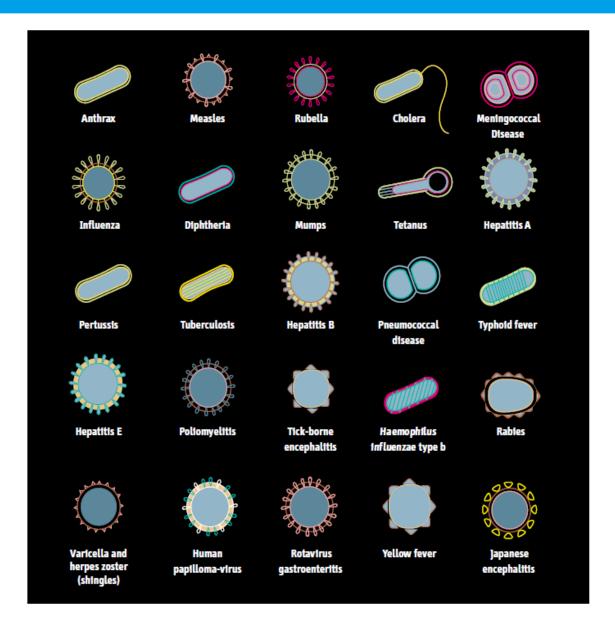

sources: JOURNAL OF POPULATION RESEARCH, PRINCETON UNIVERSITY, STANFORD LINIVERSITY, WORLD HEALTH ORGANIZATION

And the life of man, solitary, poor, nasty, brutish and short.

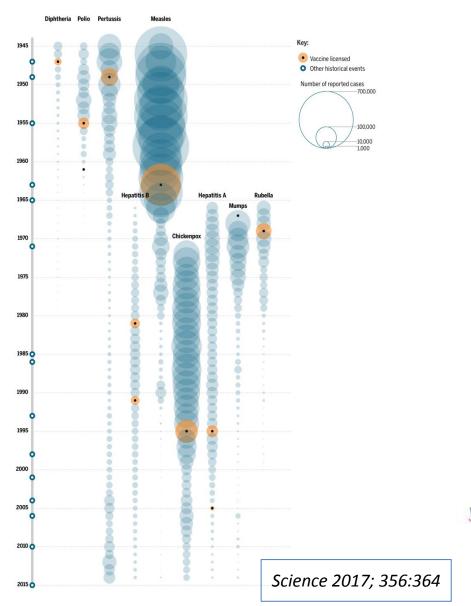

Infectious disease mortality has decreased with development

Vaccines may have greater effect in LDCs

As income levels fall, infectious diseases have a greater impact on mortality.



Vaccines work!

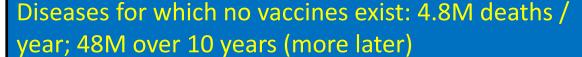

The 25 vaccine preventable infectious diseases

Global Vaccine Action Plan: 2011-2020

Impact of vaccine introduction on diseases in USA

Estimate of decline of disease morbidity due to vaccination

Disease	Reduction
Diphtheria	100%
Measles	99.9%
Paralytic poliomyelitis	100%
Rubella	99.9%
Congenital rubella syndrome	99.3%
Smallpox	100%
Mumps	95.9%
Tetanus	92.9%
Pertussis	92.2%


Ventola , P&T 2016, 41:426

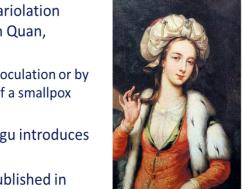
Vaccination prevents millions of cases of death and illness

Underutilized vaccines: 25M lives could be saved in 10 years

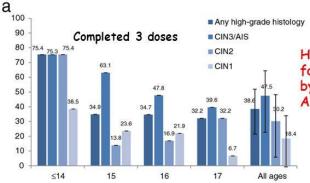
GROUP VACCINE NO. OF FUTURE DEATHS AVERTED a,b Measles 1st dose 10.6M Original Expanded Programme Measles 2nd dose 0.4M on Immunization vaccine^c Measles supplementary 3.1M immunization activities 5.3-6.0M Hepatitis Bd New or underutilized vaccines 1.4-1.7M Haemophilus influenzae type b 1.6-1.8M Pneumococcus 0.8 - 0.9MRotavirus 0.5M Human papillomavirus 0.03-0.04M Yellow fevere 0.03M Meningococcal A meningitisf 0.07M Japanese encephalitis9 0.4M Rubella TOTAL (2011-2020) 24.6-25.8M

Vaccines wipe out deadly diseases


- 1695 first mention of variolation Zhang Lu (or 1549, Wan Quan, Douzhen xinfa)
 - Given by intranasal inoculation or by wearing the clothes of a smallpox infected child
- 1721 Lady Mary Montagu introduces the West to variolation
- 1798 Jenner's report published in the Proceedings of the Royal Society

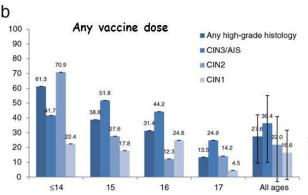


Last case, variola major, Bangladesh, 1975


Vaccines can prevent cancer

Impact of Hepatitis B vaccination on Hepatocelluar Carcinoma in Korea & Taiwan

LOCATION	BEFORE	AFTER	NOTES
Taiwan	0.70	0.36	Ages 6-14
	0.52	0.13	Ages 6-9
Korea	18.1	1)Vaccinated 0.58 2)"natural" anti-HBs 0.34	Cohort 370,285 m. 30+. 35,934, vaccinated



HPV vaccine effectiveness for CIN outcome to end 2011 by age of vaccination in 2007 Australia

Note: use of images does not imply endorsement of any vaccine shown.

Gertig et al 2013 BMC Med Oct 22 epub

Vaccines are cost-effective

Epidemics are expensive

- Healthy societies make better partners
 - UN Sustainable Development Goal 3
- The cost/burden of infectious diseases is enormous
 - MERS in Korea \$10 billion
 - SARS \$40 billion
 - Ebola \$6 billion
 - Global pandemic (1918 Spanish flu, 5% of global GDP ~3 trillion USD (World Bank)
 - Total cost for 21st century \$6 trillion
- How do we value the human cost?
- Global Health Security is National Security

Children with measles, Africa

An ounce of prevention Is worth a pound of cure

Saving a life costs very, very little

Sample pricing in 2013 of vaccines contracted with suppliers by UNICEF, the world's largest vaccine buyer

And it doesn't cost much

Usually...

Take the 2009 US birth cohort, 4.1M children

- The vaccines they receive will save \$13.5B in health treatment costs
- It will have a total savings of \$70B (when including other measures, such as productivity)
- Global costs saved by just pneumococcal, rotaviral and HiB vaccines could total \$63B 2011-2020.

Vaccination prevents deaths and saves money

- Vaccination programs have prevented >3.0 billion infections worldwide
 - >500 million deaths prevented
- Vaccines will save lives from 2011-2020:

25 million deaths prevented

US CDC estimate

From 1994-2013 in USA

Vaccines prevented:

- 322 million illnesses
- 21 million hospitalizations
- 732,000 deaths

Vaccines saved:

- \$295 billion direct costs
- \$1.38 trillion in total societal costs

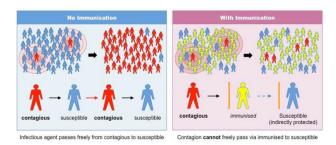
For every \$1 spent on vaccines, \$16 are saved in future healthcare costs, lost income, and lost productivity. If all indirect costs are included, the ROI is 44:1.

http://www.who.int/immunization/global_vaccine_a ction_plan/GVAP_doc_2011_2020/en/index.html)

Example: Indirect effects of vaccination

Contents lists available at ScienceDirect

Vaccine


Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Vaccine 33 (2015) 5020-5026

The causal effect of childhood measles vaccination on educational attainment: A mother fixed-effects study in rural South Africa

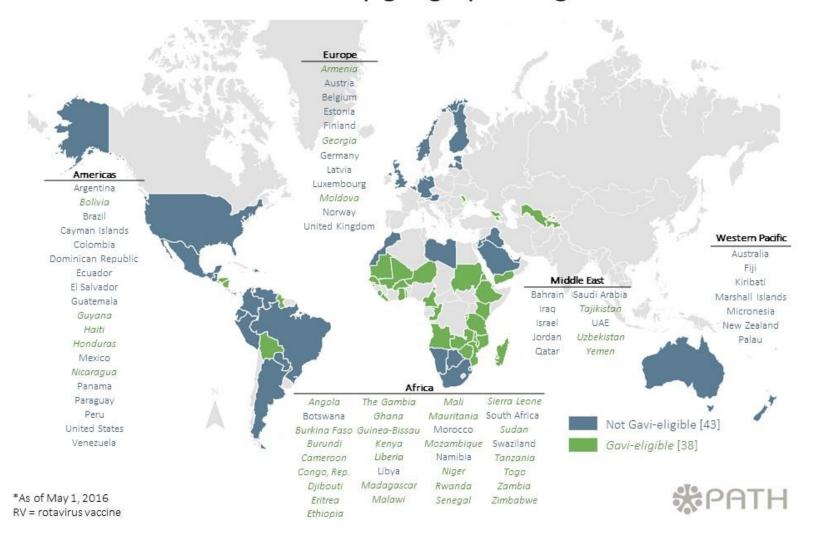
Tobenna D. Anekwe^{a,b,*}, Marie-Louise Newell^{b,c}, Frank Tanser^b, Deenan Pillay^{b,d}, Till Bärnighausen^{b,e}

- 1) Improve IQ
- 2) Higher survival lower birth rate
- 3) Higher parental productivity
- 4) 30-50% of Asian growth from 2,3

In RSA introduction of PCV result in an 80% decrease in non-susceptible S. pneumoniae infections (van Gottberg, NEJM 2014)

- Education
- Herd immunity
- Antimicrobial resistance (direct & indirect)
- Improved health & economic prospects
- Improvements in GDP

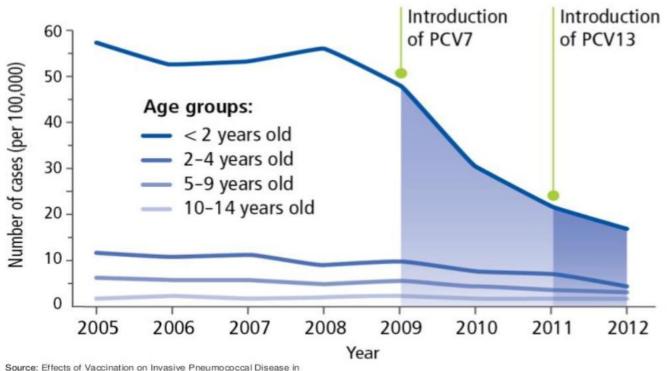
A VIRTUOUS CYCLE


Vaccines don't save lives, vaccination does

Income is not the only driver of vaccination uptake

Rotavirus vaccine 2016

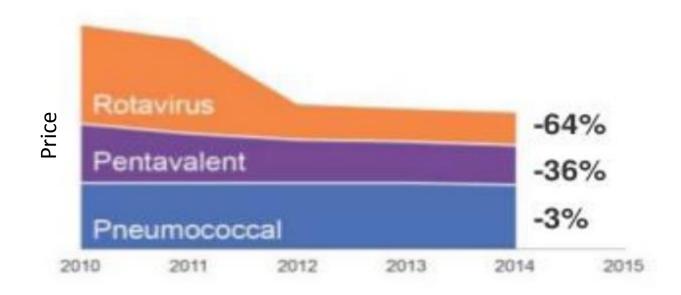
National RV introductions by geographic region: 81 countries*



Impact of PCV: RSA

Substantial reduction in pneumococcal disease in South Africa thanks to vaccines

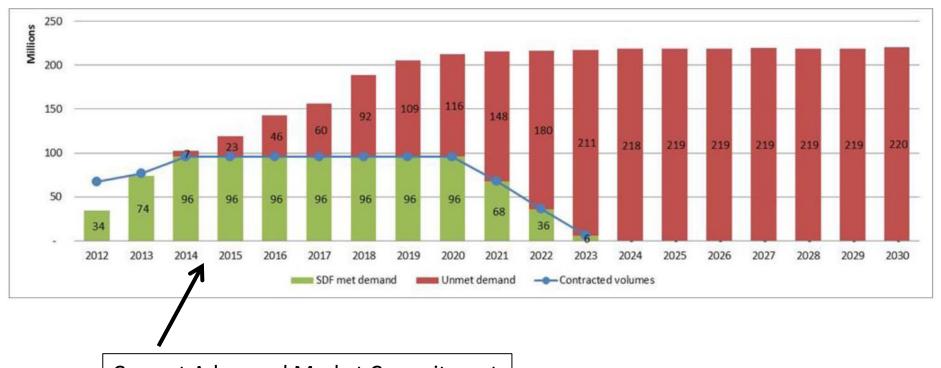
Invasive pneumococcal disease cases by age group



South Africa. New England Journal of Medicine, November 13, 2014.

Success has a price

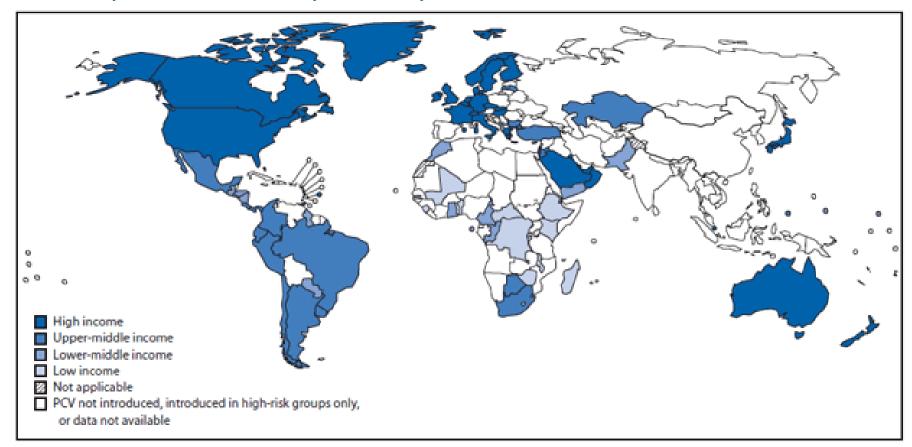
PCV accounts for a large % of spending



Unicef, 2015, Cost to fully immunize a child with rota, pentavalent, and pneumococcal vaccines

Unmet Demand for PCV – the challenge of supply

GAVI: Strategic demand forecast for PCV



Current Advanced Market Commitment

Income is not the only driver of vaccination uptake

PCV implementation by country income

Non-Gavi countries, primarily middle/lower middle band

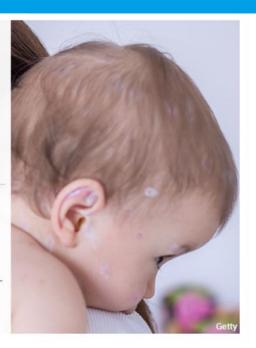
Why is there a resurgence in measles in Europe?

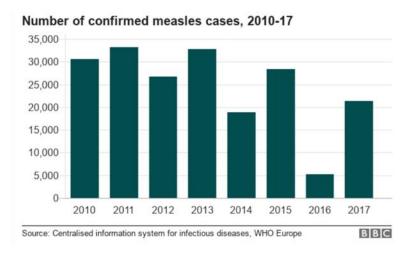
Measles cases surge in Europe, 2017

20,000

people infected

35


patients died across Europe


15 countries had large outbreaks of measles last year

282 cases in the UK

5,562 cases in Romania - the worst-affected country

Source: WHO

BBC, 21 Feb 2018

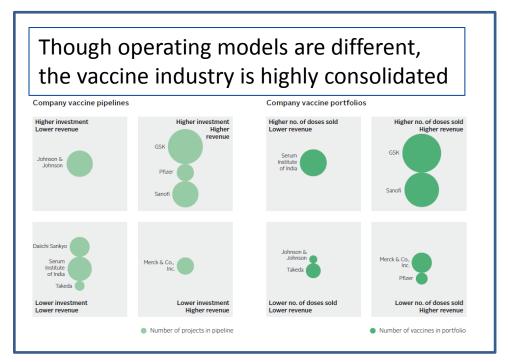
ROMANIA

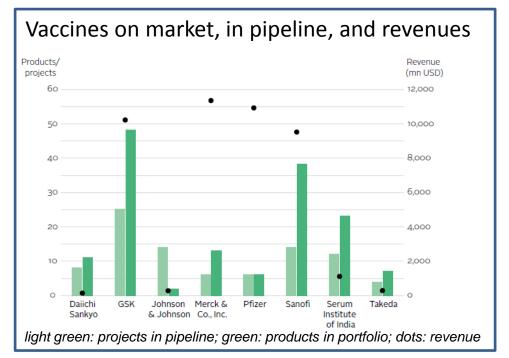
- Poorer European country
- Poorer public health infrastructure
- Weak disease surveillance
- Marginalized population (Roma)
- Vaccine shortage (!)

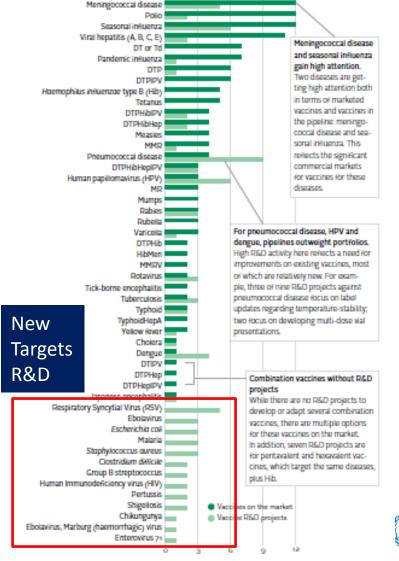
ITALY

- Anti-vaxer
- Laissez faire?

FRANCE


Anti-vaxer


UK – measles eliminated,imported cases cause measles


We need to invest in new vaccines and in smarter vaccines

Vaccine Industry Focus: Products, Pipelines, Revenue

Vaccine R&D: Gaps

Newly Approved Vaccines

Company	Approval
Sanofi	COFEPRIS, Dec 2015
Merck & Co., Inc., Sanofi	EMA, Feb 2016
Merck & Co., Inc.	FDA, Dec 2014
Merck & Co., Inc.	EMA
Serum Institute of India	WHO, Dec 2014
Pfizer	FDA, Oct 2014
Pfizer	EMA, Apr 2016
Serum Institute of India	CDSCO, Jun 2016
Sanofi	UK, Jul 2016
	Sanofi Merck & Co., Inc., Sanofi Merck & Co., Inc. Merck & Co., Inc. Serum Institute of India Pfizer Pfizer Serum Institute of India

- 1/3 of R&D covers new vaccine targets
- At least 32 diseases have no vaccines from companies in review
- Adaptations to existing vaccines cover 50% of R&D
- Cost
 - \$500M less complex vaccine
 - \$1 B more complex vaccine
- Failure rate
 - Only 7% of vaccines reaching preclinical development are licensed

Diseases without vaccine R&D

Adenovirus

Amoebiasis

Balantidiasis

Buruli ulcer

Campylobacter enteritis

Chagas disease

Cryptosporidiosis

Cytomegalovirus (CMV)

Dracunculiasis

Echinococcosis

Food-borne trematodiases

Giardiasis

Hantavirus pneumonia

Human African trypanosomiasis

Human metapneumovirus

Human monkeypox

Isosporiasis

Klebsiella pneumoniae

Lassa fever

Leishmaniasis

Leprosy

Lymphatic filariasis

Onchocerciasis

Parainfluenza

Pneumocystis jiroveci

Schistosomiasis

Severe Acute Respiratory Syndrome (SARS)

Soil-transmitted helminthiasis

Taeniasis/cysticercosis

Trachoma

Yaws

Yersinia enterocolitica

Diseases that don't make the list of diseases without vaccine R&D

- Group A Strep?
- Hepatitis E?
- Non typhoidal Salmonella?
- Shigella?

SUMMARY

- Vaccines work to prevent morbidity, mortality, cancer and have numerous "additional benefits"
- Vaccines are cost-effective
- Vaccines only work when used
- We need to keep developing new vaccines there are still diseases with high burden > new mechanisms for funding.

