PIDSP Annual Convention PIDSP@25: Forging Ahead in Pediatric Infectious Diseases Feb 21-23, 2018 Crowne Plaza Manila Galeria Pasig City, Philippines

<u>ASPID Symposium</u> Updates on Vector-Borne Viruses: Chikungunya

Salvacion R. Gatchalian, M.D. FPPS, FPIDSP, FPSMID Associate Professor, College of Medicine University of the Philippines, Manila

CHIKUNGUNYA

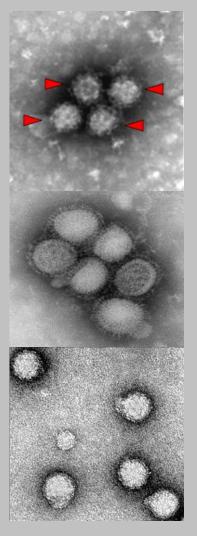
- Arthropod-borne virus is a causative agent of emerging infectious diseases
 - Responsible for global public health problem
- Dengue and Chikungunya (CHIKV)
 - Transmitted by same species of mosquito
 - Co-circulate and lead to dual infections and concurrent epidemics
 - Share similar clinical features

Gubler, D.J. Ann NY Acad Sci 951, 13-24 Nimmannitya Ser al Am J Trap Med Hyg 1969;18: 954-71 Halstead SB et al Am J Trop Med 1969; 18:972-83 Hochedez Pet al Am J Trap Med Hyg 2008; 78:710-3

CHIKUNGUNYA VIRUS INFECTION

- Re-emerged in Africa and Asia
- Caused large outbreaks
- Public health problem

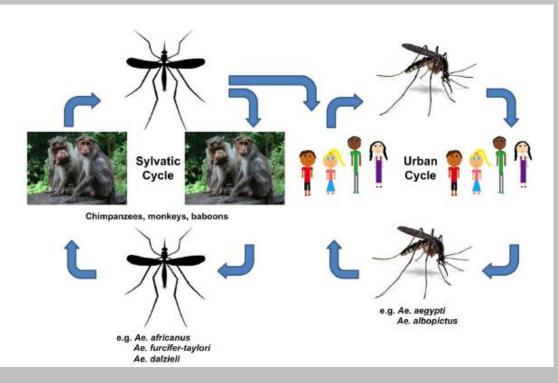
Burt et al The Lancet 2012; 379:662-71 Hapurrachchi et al J Gen Virology 2010; 91:1067-1076



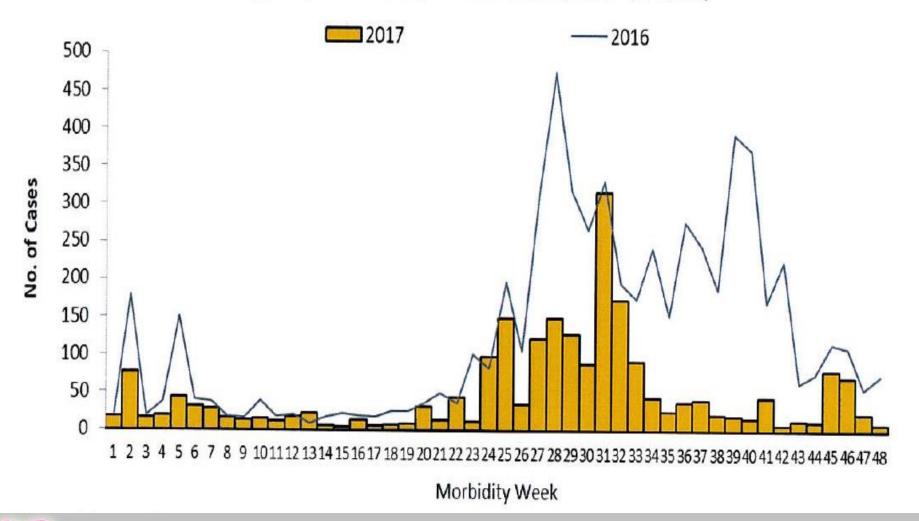
Map Not To Scale

Chikungunya Virus

- Family Togaviridae, Genus Alphavirus
- Belongs to the Semliki Forest Virus (SFV) antigenic complex group
- Single-stranded plus-sense RNA
- Have geographically associated genotypes:
 - West African (WAf),
 - East/Central/South African (ECSA),
 - Asian genotypes



• Transmitted by the same vector of Dengue virus



Thiboutot MM, et. al, PLoS Neglected Tropical Diseases (2010), Vol 4, Issue 4.

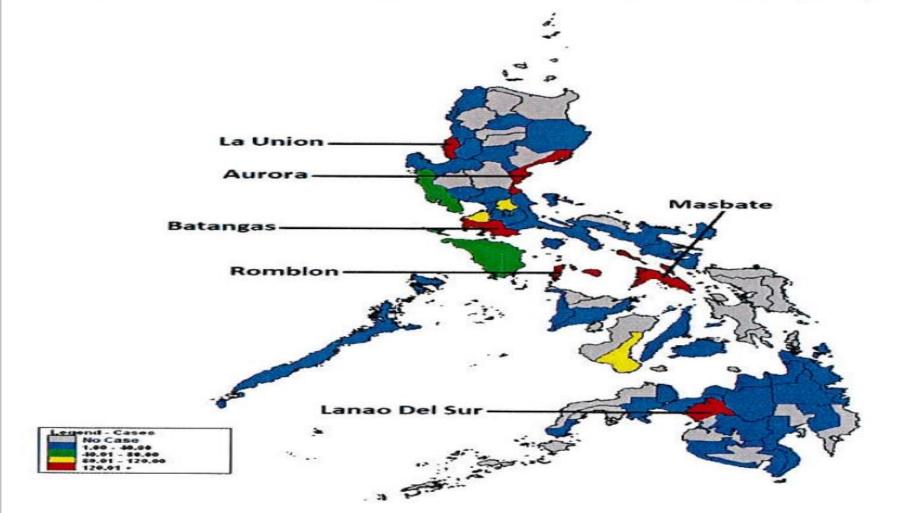

Fig. 1 Reported Chikungunya Cases by Morbidity Week, Philippines, as of January 1 – December 2, 2017* (N=2,287)

Fig. 3 Reported Chikungunya Cases by Province Philippines, as of January 1 – December 2, 2017* (N=2,287)

Profile of Cases

Ages of cases ranged from less than 1 year to 95 years old (median = 32 years). Majority of cases were females (61.0%). Most (9.0%) of the cases belonged to the 25-29 years age group. There were 4 deaths reported (CFR=0.17%).

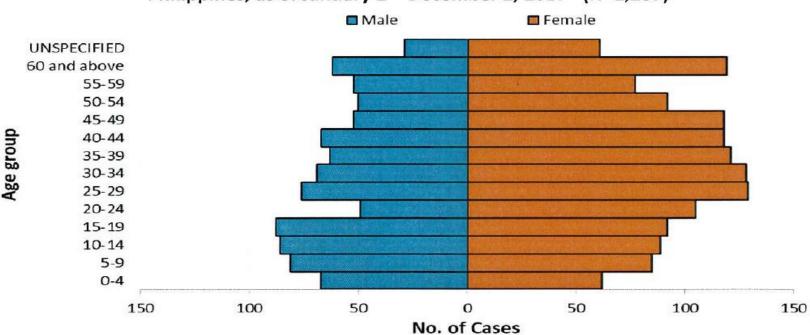
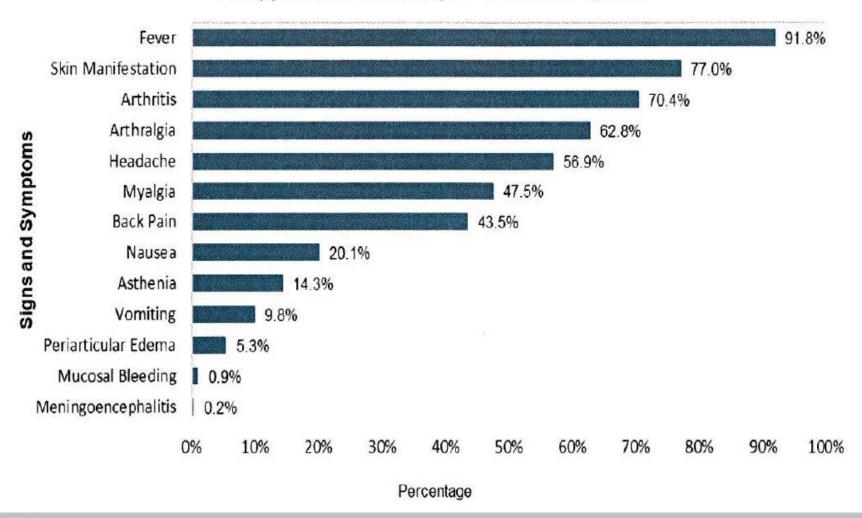
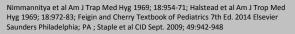



Fig. 4 Reported Chikungunya Cases by Age Group and Sex Philippines, as of January 1 – December 2, 2017* (N=2,287)

Most common signs and symptoms that have been experienced by the reported chikungunya cases were fever (91.8%), skin manifestation (77.0%) and arthritis (70.4%).

Fig. 5 Signs and Symptoms Experienced by Reported Chikungunya Cases, Philippines, as of January 1 – December 2, 2017**

Clinical Features


- Asymptomatic illness to severe debilitating disease
- Children and elderly are most at risk for severe disease
- Incubation period: 2-4 days (range 2-12 days); no prodrome
- Prototypical features: fever, rash and arthralgia

CHIKUNGUNYA: Clinical Manifestation

Clinical Manifestations	DENGUE	CHIKUNGUNYA
Fever (T>38.9 ^o C)	++	+++
Myalgias	++	+
Arthralgia	+/-	+++
Headache	++ (retro-orbital)	++
Rash	+	++
Arthritis		+++
Tenosynovitis	-	+++
Hypotension	++ (D5-D7)	+/-
Bleeding	++ (D5-D7)	+/-
Shock	+/-	-
Conjuntival injection	+	++

Acute Manifestations

Acute (2-10 days)

Edematous rash

Myalgia

Chikungunya: Clinical Manifestation

- Fever
 - Abrupt in onset
 - High grade
 - Majority have a single spike of fever followed by either rapid or slow return to baseline
 - Less than 1/3 have secondary spikes seen in dengue
- Rash
 - End of febrile phase (day 3-5), diffuse irritating maculopapular rash commonly on arms, back, shoulders
 - Rash lasts 48 hrs
 - Can have pigmentary changes: asymptomatic brown-black pigmentation in centrofacial area
 - No enanthem

Chikungunya: Clinical Manifestation

- Arthritis
 - Join pain can be severe, preventing sleep
 - Polyarticular, frequently in lower limbs and small joints
 - Arthritis and arthralgia uncommon in children but can be severe
 - Residual arthralgia is less frequent in children vs adults
- Hemorrhagic manifestations
 - Not as common as in dengue
 - If bleeding manifestations occur, less severe
 - than dengue


Chikungunya: Clinical Manifestation

- Neurologic
 - Not common
 - BFC
 - Altered level of consciousness, blindness due to retrobulbar neuritis and accuse flaccid paralysis
 - No specific neurologic finding or CSF abnormalities

CHIKUNGUNYA: Clinical Manifestation

- Polyarthralgia most often seen with CHIKV
 - Most disabling
 - Arthralgia is symmetrical
 - > 1 joint affected: fingers, wrists, elbows, ankles, toes and knees
 - Some fully recover
 - Some with persistent arthralgia for months to years

- 57% with persistence or recurrence of arthralgia 15 months after initial infection
- Joint symptoms persists for years

Burt et al The Lancet 2012; 379:662-71 Sissoko D et al PLoS Negl Trop Dis 2009; 3:e389

CHIKUNGUNYA: Clinical Manifestation

- Study of serologically proven CHIKV
 - 12% with residual joint symptoms (stiffness, swelling and pain) 3 years after
- Likelihood of persistent arthralgia dependent on age
- Other factors
 - Underlying disorders
 - Severity of pain at disease onset
 - Children at risk for severe manifestations

Burt et al The Lancet 2012; 379:662-71 Brighton et al S Afr Med J 1983; 63:313-315 Sissoko D et al PLoS Negl Trop Dis 2009; 3:e389 Mnimunda SP Trans R Soc Trop Med 2010; 104:392-99

CHIKUNGUNYA: Clinical Manifestation

- Chronic Arthralgia Phase
 - Fluctuations in intensity and relapses
 - same joint sites
- Less severe but with reduction in movement and quality of life

Burt et al The Lancet 2012; 379:662-71 Staple et al CID Sept. 2009; 49:942-948 Feigin and Cherry Textbook of Pediatrics 7th ed. 2014 Elsevier Saunders Philadelphia, PA

Chronic Manifestations of Chikungunya

Chronic (months to years)

Inflammatory osteoarthritis

Swollen and stiff joints

CHIKUNGUNYA: Clinical Manifestation

Rash

DENGUE	CHIKUNGUNYA
Maculopapular	Maculopapular
Petechiae	Aphthous like ulcers
Urticarial	Vesiculobullous with
	desquamation
Flushing or erythematous	Vasculitic
mottling	

Burt et al The Lancet 2012; 379:662-71 Taubitz W et al CID July 2007; 45:el-4 Staple et al CID Sept. 2009; 49:942-948

Rashes seen in Chikungunya

Chikungunya

- CHIKV: fever occurs earlier and is of shorter duration; arthritis, arthralgia, myalgia, maculopapular rash more common
- constitutional symptoms in both diseases
- DENV: serious hemorrhagic manifestations, hepatomegaly, shock more frequent; post-illness bradycardia

CHIKUNGUNYA: Clinical Manifestation

Laboratory Findings

	DENGUE	CHIKUNGUNYA
Laboratory Findings		
Leukopenia	+++	++
Neutropenia	+++	+
Lymphopenia	++	+++
Elevated HCT	++	-
Thrombocytopenia	+++	+/-

CHIKUNGUNYA: Diagnosis

- Based on clinical, epidemiological and laboratory criteria
- Laboratory parameters variable often do not aid in diagnosis
- Confirmed by:
 - Detection of virus
 - Viral RNA
 - CHIKV-specific antibodies
- Type of test dictated by timing and volume of samples
- Historically, diagnosed based on serology
- Molecular techniques
 - RT PCR

Staple et al CID Sept. 2009; 49:942-948 Powers et al J Gen Virology 2007; 88:2363-77 Burt et al The Lancet 2012; 379:662-71

Premise	Diagnostic method	Sample types	Sensit ivity (%)	Specificity (%)	Advantages	Disadvantages	References
Detection of virus	Virus isolation (in vivo or in vitro)	Serum, plasma, whole blood, and fresh or FFPE tissues	Variable	100	Highly specific	Technical, laborious Requires biosafety level 3 containment May take 1-2 weeks	[1]
Detection of viral antigen	ELISA or immu nochromato- graphic assay (ICA)	Serum and CSF	85 (serum) 80 (CSF)	89 (serum) 87 (CSF)	Early diagnosis	Commercial assays not widely available Requires biosafety level 3 containment	[16, 17]
	RT-PCR		100	Up to 100	Highly sensitive and specific Rapid turn around time Multiplex ava i able	Expensive reagents and special ized equipment	
Detection of viral nucleic	Real-t ime RT-PCR	Serum and dried blood spots	100	Up to 100	Multiplex available	Expensive reagents and special ized equipment	[13, 16, 18-20]
acid Isothermal amplification methods (RT-LAMP		tion spins	100	95.25	Does not require specialized equipment (i.e., thermocyclers)		
	ELISA	Serum CSF	IgM: 17 (serum); 48 (CSF) IgG: 45 (serum); 63	IgM: 95 (serum) IgG: 53 (serum)	Widely available Relatively cheaper and easier to perform	Possible cross-react wity with other alphaviruses Elevated IgM does not distinguish recent past	
Detection of host antibody			(CSF)	-Box en (veram)	Rapid bedsidetests are available	infection from acute in fection Lack the ability to quantify	[4, 16, 17, 20-
response IFA	IFA	Serum	85-97	90-98	Sensitive and specific Commercially available	and the second states in the	22]
	PRNT	Serum			Very specific for alphaviruses; gold standard for confirmation of serologic test results	Requires the use of live virus (requires Biosafety level 3 containment)	

TABLE 2: Diagnostic tests for CHIKV infection.

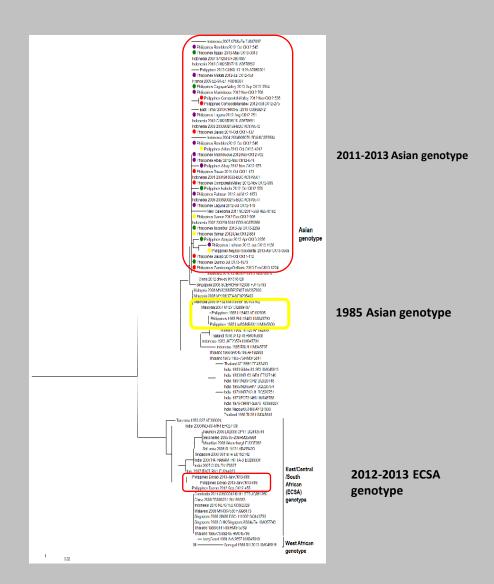
Stacey K. Mardekian and Amity L. Roberts. Diagnostic options and challenges for Dengue and Chikungunya viruses. BioMed Research International Volume 2015, Article ID 834371, 8 pages http://dx.doi.org/10.1155/2015/834371

Chikungunya: Laboratory Tests

- CHIKV: leukopenia with relative lymphocytosis by day 3-6; insignificant rise in Hct by day 2-4; thrombocytopenia is mild and bleeding does not occur
- Can use virus isolation, viral RNA detection, serology, PCR
- Most sensitive: IgM capture ELISA

Genetic Analysis of Chikungunya virus causing re-emergence in the Philippines

AVA KRISTY SY¹, MARIKO SAITO^{2,3}, INEZ ANDREA MEDADO^{1,3}, AMADO O. TANDOC¹, SOCORRO LUPISAN¹, HITOSHI <u>OSHITANI</u>²


¹ RESEARCH INSTITUTE FOR TROPICAL MEDICINE (RITM), <u>MUNTINLUPA</u> CITY, PHILIPPINES ² DEPARTMENT OF VIROLOGY, TOHOKU UNIVERSITY GRADUATE SCHOOL OF MEDICINE, SENDAI, JAPAN ³ TOHOKU-RITM COLLABORATIVE RESEARCH CENTER ON EMERGING AND RE-EMERGING INFECTIOUS DISEASES, <u>MUNTINLUPA</u> CITY, PHILIPPINES

- Serum samples from patients with fever, rash, and joint pains was sent to RITM for IgM testing
- Samples collected <5 days after onset of symptoms were tested for CHIKV RNA using using one-step RT-PCR targeting E1 gene using primers and protocol by Hasebe, *et al* (2002) and Arias-Goeta, *et al* (2013) and directly sequenced.
- Phylogenetic analysis was performed using neighbour joining method using Kimura-2 parameter model (K2+G) on partial E1 gene (733 bp) by MEGA 6.05

Results

- From 2011-2013, 5,729 have been received for testing. 2,891 samples (50%) have detectable CHIKV anti- IgM
- 31 samples were sequenced for partial E1 gene.
- Most belongs to the Asian genotype and were clustered into the same branch and were very closely related regardless of geographic location and date of collection.
- 3 samples from Davao (collected in 2012 and 2013) belongs to ECSA and have the A226V mutation.

Sy et al. Genetic Analysis of Chikungunya virus causing re-emergence in the Philippines. Research Institute for Tropical Medicine (RITM), Muntinlupa City, Philippines; Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku-RITM Collaborative Research Center on Emerging and Re-emerging Infectious Diseases, Muntinlupa City, Philippines

Neurocognitive Outcome of Children Exposed to Perinatal Mother-to-Child Chikungunya Virus Infection: The CHIMERE Cohort Study on Reunion Island

Patrick Gérardin^{1,2,3,9}*, Sylvain Sampériz^{1,9}, Duksha Ramful^{1,2,4,5}, Brahim Boumahni^{1,5}, Marc Bintner¹, Jean-Luc Alessandri¹, Magali Carbonnier¹, Isabelle Tiran-Rajaoefera¹, Gilles Beullier⁵, Irénée Boya⁶, Tahir Noormahomed⁷, Jocelyn Okoï^{8,9}, Olivier Rollot², Liliane Cotte¹, Marie-Christine Jaffar-Bandjee¹, Alain Michault¹, François Favier², Monique Kaminski³, Alain Fourmaintraux¹, Xavier Fritel^{3,10,11}

1 CHU de La Réunion Saint-Denis/Saint-Pierre, La Réunion, France, 2 INSERM CIC-EC (CIE2), Saint-Pierre, La Réunion, France, 3 INSERM UMRS 953, "Epidemiological Research Unit on Perinatal Health and Women and Children Health", UPMC Université Paris 6, Paris, France, 4 GRI, Research Group on Immunopathology and Infection, EA4517, Université de La Réunion, INSERM UMRS 945 "Immunity and Infection" Saint-Denis, La Réunion, France, 5 Centre Hospitalier Gabriel Martin, Saint-Paul, La Réunion, France, 6 Centre Hospitalier de l'Est Réunion, Saint-Benoît, La Réunion, France, 7 Clinique Sainte-Clotilde, Sainte-Clotilde, La Réunion, France, 8 Clinique Durieux, Le Tampon, La Réunion, France, 9 Centre d'Action Médico-Sociale Précoce (CAMSP), Saint-Louis, La Réunion, France, 10 Poitiers University Hospital, Poitiers, France, 11 INSERM CIC-P 0802, Poitiers, France

- EXPOSED-INFECTED (EI):
- Infants of mothers infected during pregnancy with:
 - (+) RT-PCR and/or
 - (+) CHIKV IgM via ELISA
- before the 10th day of life (or 15th day of life if CSF was used)
- EXPOSED-UNINFECTED (EU)
 - Mothers who were RT-PCR negative but seroconverted on follow-up

Table 4. Predictors of global neurodevelopmental delay in multivariable analysis, CHIMERE cohort, Reunion Island, 2008.

Poisson regression model	Total	Childre	en with GND [†]	Adjusted IRR	(95% CI)	P value ¹
Chikungunya virus infection						
Yes	32	16	(50.0)	2.79	(1.45-5.34)	0.002
No	119	17	(14.3)	1		
Head circumference*						
-1 S.D≤z-score<+2 S.D	143	28	(19.6)	1	-	
-2 S.D≤z-score<-1 S.D	4	1	(25.0)	0.82	(0.27-2.41)	0.718
z-score<-2 S.D	4	4	(100)	2.38	(1.41-4.01)	0.001

Developmental quotients (DQ) were measured between 15.8 and 27 months of age.

[†]Global neurodevelopmental delay (GND) is defined for DQ≤85.

Data are numbers, percentages, adjusted IRR (incidence rate ratio) and robust SE (robust standard error).

P values are given for adjusted Wald tests.

The model is adjusted for the social deprivation propensity score (see table 2 of ref. [14]) assigning positive or negative points to the rounded-value beta coefficients associated with categories of maternal origin, education, marital status, parity and body mass index; small for gestational age (defined for birth-weight <10th percentile of AUDIPOG growth charts);

*head circumference is corrected for 24 months of postnatal age.

doi:10.1371/journal.pntd.0002996.t004

- CHIKV has a 3-fold increased risk of GND after adjusting maternal social situation and neonatal characteristics, such as SGA and HC
- neurodev dysfunction identified in 23/33 (73.9%) of infected children
 - areas most affected: coordination, language (n=19), sociability (n=12) and movement/posture (n=9)

Neurocognitive Outcome of Children Exposed to Perinatal Mother-to-Child Chikungunya Virus Infection: The CHIMERE Cohort Study on Reunion Island

- CHIKV is an independent predictor of Global neurodevelopment delay (3x risk after adjusting for maternal social situation, neonatal characteristics like SGA and HC)
- Protracted high fever in mother might trigger cognitive dysfunction in offspring
 - High fever throughout pregnancy, associated with other maternal infections, linked to various neurologic outcomes such as neural tube defects, seizures or CP, autism or epilepsy etc.
- CHIKV encephalapathy can lead to cerebral palsy, microcephaly (dec brain volume), neuronal loss

Gerardin et al. Neurocognitive Outcome of Children Exposed to Perinatal Mother-to-Child Chikungunya Virus Infection: The CHIMERE Cohort Study on Reunion Island. PLOS Neglected Tropical Diseases July 2014 | Volume 8 | Issue 7 | e2996

CHIKUNGUNYA: Treatment

Supportive				
- NSAIDS				
- Bed rest				
- Antipyretics or cold sponging				
- Analgesics or mild sedation				
- NSAIDS for arthritis after illness				
- Physiotherapy				
- Hydration				

PIP

CHIKUNGUNYA: Treatment

- Ribavirin
 - Anti-viral activity vs. RNA viruses
 - Moderate beneficial effect (Ravichandran and Manian) in alleviating arthralgia and swelling
 - Still needs more evidence

Burt et al The Lancet 2012; 379:662-71

Û

CHIKUNGUNYA: Treatment

- Chloroquine
 - Inhibits CHIKV infection in cell culture thru effects on endosomal modification
 - Anti- inflammatory activity
 - Used in chronic inflammatory diseases
 - No effect in a double-blinded trial

Burt et al The Lancet 2012; 379:662-71 Feigin and Cherry Textbook of Pediatrics 7th ed. 2014 Elsevier Saunders Philadelphia, PA

CHIKUNGUNYA: Treatment

- Monoclonal Antibody
 - Passive transfer of CHIKV immune serum protects vs. CHIKV- induced lethality in mouse models
 - May have value
 - 2 Human Monoclonal Antibodies neutralizing CHIKV in vitro were tested
 - 5F10
 - 8B10
 - Tested efficacy in vivo as prophylactic and therapeutic treatments
 - Significant delay in CHIKV driven lethality

CHIKUNGUNYA: Prognosis

CHIKUNGUNYA

Chronic arthritis

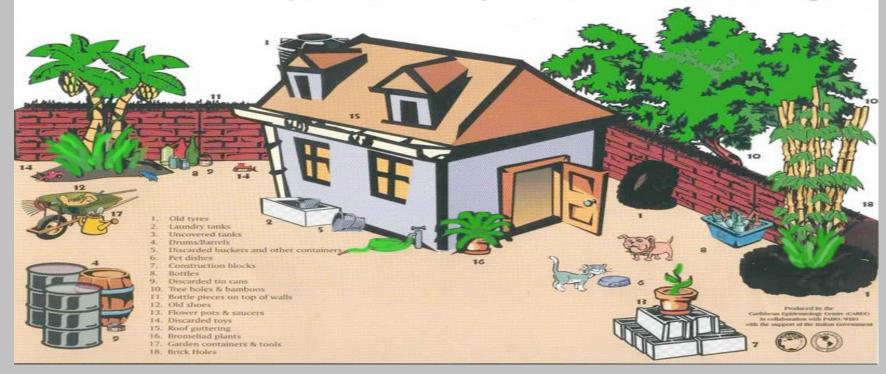
Destructive arthropathy reported

Residual neurologic deficits in children

Feigin and Cherry Textbook of Pediatrics 7th ed. 2014 Elsevier Saunders Philadelphia, PA

CHIKUNGUNYA: Prevention

PREVENTION AND CONTROL	VACCINE IN DEVELOPMENT
Integrated Vector Management	Formalin inactivated (Walter Reed) Phase II
Surveillance	Live attenuated vaccine Phase II
Case Management	Chimeric alpha virus approach Phase I
Social Mobilization & Communication about the disease	Virus like particle in Pre-clinical
Outbreak Response	
Research	



Burt et al The Lancet 2012; 379:662-71 Powers et al J Gen Virology 2007; 88:2363-77 Sudeep and Parashar J Biosci Nov 2008; 33(4):443-449

The variety of breeding places of the vector mosquito in your surroundings

The variety of breeding places of the Dengue mosquito in your surroundings

Without containers there is no mosquito; without mosquitoes there is no DENGUE or CHIKUNGUNYA. Get rid of breeding places in your surroundings

Chikungunya Control

Everyone's concern. The success depends on the involvement of all levels of society - from household, family, community, NGOs, social organizations, local & national authorities.

CHIKUNGUNYA

- Important clinical findings include:
 - Abrupt onset of fever and shorter duration of illness
 - Maculopapular rash
 - Polyarthralgia with arthritis/tenosynovitis
 - Conjunctival injection
 - Chronic phase
 - Lymphopenia

CHIKUNGUNYA

- CHIKV did not have much attention
 - Low to rare mortality
 - Infrequent occurrence
 - Absence in developed countries
- 2005 2007 outbreak
 - Awareness in scientific community and the public
- Prolonged arthralgic syndrome for weeks or months or years
 - Serious economic and social impact on individual and community
- Need to be alert and astute
 - Dengue and CHIKV present
 - CHIKV diagnosed based on fever, arthralgia and/or rash lead to over-diagnosis
 - If no rash during fever or low WBC count consider dengue as differential

ACKNOWLEDGEMENTS

- Would like to thank the ff:
 - Dr. Rose Capeding
 - RITM-SRU
 - Rowena Capistrano, R.N.
 - Albert Anduyon
 - Ava Sy
 - DOH-EB
 - Abe Sepulveda

