The Challenges in the Measles Elimination in the Philippines

Josefina Cadorna Carlos, MD, FPPS, FPIDSP, FPSMID
Professor of Pediatrics
UERMMMCI

Objectives

To discuss the current situation of measles in the country.

To present the challenges as well as the recommendations for the measles elimination for the Philippines.

Outline

- Objectives
- Timelines in the Measles Elimination in WPRO
- Conceptual Framework
- Definitions
- Measles Surveillance Report
- Recommendations of the Regional Verification

Committee

Minimum vaccination coverage requested to sto

 infection transmission| Infection | Mean age of
 infection | Inter-
 epidemic
 perod | Infectious
 -ness
 index | Minimum
 vaccination
 coverage |
| :--- | :---: | :---: | :---: | :---: |
| Measles | $4-5$ | 2 | $15-17$ | $92-95$ |
| Pertussis | $4-5$ | $3-4$ | $15-17$ | $92-95$ |
| Mumps | $6-7$ | 3 | $10-12$ | $90-92$ |
| Rubella | $9-10$ | $3-5$ | $7-8$ | $85-87$ |
| Diphtheria | $11-14$ | $4-6$ | $5-6$ | $80-85$ |
| Polio | $12-15$ | $3-5$ | $5-6$ | $80-85$ |

Anderson and May, Lancet 1990

Western Pacific Region (WHO)

- Sept. 2012 : Reaffirms the commitment to eliminate measles and rubella control

Participants of the Sixth Annual Meeting of the Regional Verification Commission for Measles Elimination in the Western Pacific

Conceptual framework

- Absence of endemic transmission in a defined geographical area (e.g., region or country) for a period ≥ 12 months in the presence of a well-performing surveillance system
- Suspected cases must have field and laboratory investigations
- Classified according to method of confirmation (e.g., laboratory-confirmed or epilinked)
- Origin on infection (e.g., endemic, imported, import-related)
- Interruption of transmission for at least 3 years
- High quality surveillance
- Genotype evidence of absence of endemic transmission

-Examples:

- Rate of reporting discarded non-measles non-rubella cases at the national level (Target: ≥ 2 cases per 100000 population per year)
- Proportion of suspected cases with adequate specimens for detecting acute measles or rubella infection collected and tested in a proficient laboratory (Target: $\geq 80 \%$)

> - Epidemiology of measles, rubella and CRS - Immunity levels of multiple population cohorts
> - Quality of surveillance systems
> - Sustainability of the national immunization program
> - Molecular epidemiology

Word or Definition
 Measles or worldwide interruption of measles or rubella virus transmission in the rubella eradication presence of a surveillance system that has been verified to be performing well
 Measles elimination
 the absence of endemic measles transmission in a defined geographical area (e.g., region or country) for ≥ 12 months in the presence of a well performing surveillance system
 Note: verification of measles elimination takes place after 36 months of interrupted measles virus transmission
 Rubella elimination
 the absence of endemic rubella virus transmission in a defined geographical area (e.g., region or country) for ≥ 12 months and the absence of CRS cases associated with endemic transmission in the presence of a well performing surveillance system
 Note: There may be a lag (up to 9 months) in occurrence of CRS cases after interruption of rubella virus transmission has occurred. Evidence of the absence of rubella transmission from CRS cases is needed because CRS cases excrete rubella virus for up to 12 months after birth.
 Note: verification of rubella elimination takes place after 36 months of interrupted rubella virus transmission.

Measles or worldwide interruption of measles or rubella virus transmission in the presence of rubella eradication
Measles elimination
a surveillance system that has been verified to be performing well
the absence of endemic measles transmission in a defined geographical area (e.g., region or country) for ≥ 12 months in the presence of a well performing surveillance system

Note: verification of measles elimination takes place after 36 months of interrupted measles virus transmission

Rubella

 eliminationthe absence of endemic rubella virus transmission in a defined geographical area (e.g., region or country) for ≥ 12 months and the absence of CRS cases associated with endemic transmission in the presence of a well performing surveillance system

Note: There may be a lag (up to 9 months) in occurrence of CRS cases after interruption of rubella virus transmission has occurred. Evidence of the absence of rubella transmission from CRS cases is needed because CRS cases excrete rubella virus for up to 12 months after birth.

Note: verification of rubella elimination takes place after 36 months of interrupted rubella virus transmission.
Word or Phrase Definition

Word or Phrase

Suspected case of measles or rubella

Definition

a patient in whom a health-care worker suspects measles or rubella infection or a patient with fever and maculopapular (non-vesicular) rash

A suspected case of measles or rubella that has been confirmed by a proficient laboratory

Laboratory confirmed

 measles case or rubella case
Epidemiologically-linked

 confirmed measles or rubella caseClinically-compatible measles case

Clinically-compatible rubella case

Note: a proficient laboratory is one that is WHO accredited and/or has an established quality assurance programme with oversight by a WHO accredited laboratory
a suspected case of measles or rubella that has not been confirmed by a laboratory but that was geographically and temporally related with dates of rash onset occurring between 7 and 21 days apart for measles or 12-23 days for rubella to a laboratory-confirmed case or (in the event of a chain of transmission) to another epidemiologically confirmed measles case
a case with fever and maculopapular (non-vesicular) rash and one of cough, coryza, or conjunctivitis but for which no adequate clinical specimen was taken and which has not been linked epidemiologically to a laboratory confirmed case of measles or another laboratory-confirmed communicable disease
a case with maculopapular (non-vesicular) rash and fever (if measured) and one of arthritis/arthralgia or lymphadenopathy but for which no adequate clinical specimen was taken and which has not been linked epidemiologically to a laboratory confirmed case of rubella or another laboratory-confirmed communicable disease

Word or
Definition

Phrase

Non-

 measles non-rubella case Measles vaccineassociated illness
Imported

 measles or rubella case| |
| :--- |
| |
| Imported |
| measles or |

a suspected case that has been investigated and discarded as a non-measles and non-rubella case using (a) laboratory testing in a proficient laboratory or (b) epidemiological linkage to a laboratory-confirmed outbreak of another communicable disease that is neither measles nor rubella
a suspected case that meets all 5 of the following criteria: (i) the patient had a rash illness, with or without fever, but did not have cough or other respiratory symptoms related to the rash; (ii) the rash began 7-14 days after vaccination with a measlescontaining vaccine; (iii) the blood specimen, which was positive for measles IgM, was collected 8-56 days after vaccination; (iv) thorough field investigation did not identify any secondary cases; and (v) field and laboratory investigations failed to identify other causes. Alternatively, a suspected case from whom virus was isolated and found on genotyping to be a vaccine strain.
a case exposed outside the region or country during the 7-21 days for measles or 12-23 days for rubella prior to rash onset and supported by epidemiological or virological evidence, or both.

Note: for cases that were outside the region or country for only a part of the 7-21 day
vire for
interval (12-23 day interval for rubella) prior to rash onset, additional evidence, including a thorough investigation of contacts of the case, is needed to exclude a local source of infection.
a locally acquired infection occurring as part of a chain of transmission originating from an imported case as supported by epidemiological or virological evidence, or both.

Importation -related measles or

Essential criteria for elimination

1. Absence of endemic transmission of measles for a period of 36 months
2. High quality surveillance
3. Genotype evidence supporting interruption of endemic transmission

- All 3 criteria are necessary for verification of elimination at the regional level.
- As some small countries may not have genotyping information prior to interruption of endemic transmission, this criterion is not an absolute requirement for determining whether elimination has been achieved at country level.

Surveillance indicators

\section*{| Indicator | Description |
| :--- | :--- |}

Timeliness of reporting

Proportion of surveillance units reporting to the national level on time (Target: $\geq 80 \%$)
Proportion of countries reporting to their WHO Regional Office on time (Target: 100\%)
Proportion of Regions reporting to WHO Headquarters on time (Target:100\%)

Note: At each level reports should be received on or before the requested date

Reporting rate of discarded nonmeasles nonrubella cases
Representativene ss of reporting

Reporting rate of discarded non-measles non-rubella cases at the national level (Target: $\mathbf{\geq 2}$ cases per 100000 population per year)

Proportion of subnational administrative units (e.g., at the province level or its administrative equivalent) reporting at least 2 discarded non-measles non-rubella cases per 100,000 population (Target: $\geq 80 \%$)

Note: if the administrative unit has a population <100 000, then the rate should be calculated by combining data over

Indicator
 Description

Adequacy of Proportion of all suspected measles and rubella cases that have had an investigation adequate investigation initiated within 48 hours of notification (Target: aim for 80%).

The numerator is the number of suspected cases of measles or rubella for which an adequate investigation was initiated within 48 hours of notification and the denominator is the total number of suspected measles and rubella cases.

Note: An adequate investigation includes collection of all the following data elements from each suspected measles and rubella case; name or identifiers, place of residence, place of infection (at least to district level), age (or date of birth), sex, date of rash onset, date of specimen collection, measles-rubella vaccination status, date of last MR vaccination, date of notification and date of investigation and travel history.

Note: Some variables may not be required for cases that are either confirmed as measles by epidemiologic linkage (e.g., date of specimen collection)

Indicator
Laboratory confirmation

Description

Proportion of suspected cases with adequate specimens for detecting acute measles or rubella infection collected and tested in a proficient laboratory (Target: $\geq \mathbf{8 0 \%}$).

Note: Any suspected cases of measles that are not tested by a laboratory and are (a) confirmed as measles by epidemiological linkage or (b) discarded as non-measles by epidemiological linkage to another laboratory-confirmed communicable disease case should be excluded from the denominator of suspected cases.

Note: Adequate specimens are: a blood sample by venepuncture in a sterile tube with a volume of 5 ml for older children and adults and 1 ml for infants and younger children; dried blood sample, at least 3 fully filled circles on filter paper collection device; oral fluid, sponge collection device should be rubbed along the gum until the device is thoroughly wet (this usually takes one minute). Adequate samples for serology are those collected within 28 days after rash onset.

Indicator
 Description

Viral detection

Proportion of laboratory-confirmed chains of transmission with samples adequate for detecting measles or rubella virus collected and tested in an accredited laboratory (Target: $\mathbf{8 0 \%}$)

The numerator is the number of chains of transmission for which adequate samples have been submitted for viral detection and the denominator is the number of chains of transmission identified.

Note: Where possible, samples should be collected from 5-10 cases early in a chain of transmission and every 2-3 months thereafter if transmission continues. For virus isolation, adequate throat or urine samples are those collected within 5 days after rash onset. For virus detection using molecular techniques, adequate throat samples are those collected up to 14 days after rash onset, and adequate oral fluid samples are those collected up to 21 days after rash onset.

Indicator	Description
Timeliness of specimen transport	Proportion of specimens received at the laboratory within 5 days (Target: $\geq 80 \%$)
Timeliness of reporting laboratory results	Proportion of results reported by the laboratory within 4 days of receiving the specimen (Target: $\geq 80 \%$)

Status of verification of measles elimination, WHO Western Pacific Region

Table 2. Status of verification of measles elimination, WHO Western Pacific Region

Country/area	Year verified	2016						2017					
		No. of confirmed cases	Source of infection				\% of cases with known source of infection	No. of confirmed cases	Source of infection				\% of cases with known source of infection
			Imported	Import- related	Endemic	Unknown / not reported			Imported	Import- related	Endemic	Unknown / not reported	
Australia	2014	99	31	18	0	50	49.5\%	82	36	32	0	14	82.9\%
Brunei Darussalam	2015	1	1	0	0	0	100.0\%	0	.	-	.	-	-
Cambodia	2015	56	0	0	0	56	0.0\%	10	0	0	0	10	0.0\%
China	-	23960	0	0	0	23960	0.0\%	4893	0	0	0	4893	0.0\%
China, Hong Kong SAR	2016	9	1	0	0	8	11.1\%	4	3	0	0	1	75.0\%
China, Macao SAR	2014	0	-	\cdot	.	-	-	2	0	2	0	0	100.0\%
Japan	2015	152	27	97	0	28	81.6\%	184	34	135	0	15	91.8\%
Lao People's Democratic Republic	.	8	0	0	0	8	0.0\%	3	0	0	0	3	0.0\%
Malaysia	.	1577	5	0	1503	69	95.6\%	1486	5	0	955	526	64.6\%
Mongolia	-	3587	0	2392	1195	0	100.0\%	9	0	0	9	0	100.0\%
New Zealand	2017	104	0	0	0	104	0.0\%	14	0	0	0	14	0.0\%
Pamua New Guinea		0						7	0	0	0	7	$\mathrm{n} . \mathrm{mx}$
Philippines	-	74	1	0	20	53	28.4\%	123	0	0	23	100	18.7\%
Republic of Korea	2014	18	9	9	0	0	100.0\%	5	3	0	0	2	60.0\%
Singapore	.	140	16	90	0	34	75.7\%	59	13	22	0	24	59.3\%
Viet Nam	.	36	0	0	0	36	0.0\%	85	0	0	0	85	0.0\%
Pacific island countries and areas	-	6	0	0	0	6	0.0\%	1	0	0	0	1	0.0\%
Total		29832	91	2606	2718	24412	18.2\%	6967	94	191	987	5695	18.3\%
							Blue	Ko meases cases					
							Green	230\%					
							Yellow	60-79\%					
							Red	$<60 \%$					

Source: Measles and rubella monthly country reports to WHO by 20 December 2017

Status of verification of measles elimination, WHO Western Pacific Region

counTRY: PHILIPPINES	2016	2017
No. of Confirmed Cases	74	123
Source of Infection	Imported	1
Source of Infection Imported-related	0	0
Source of Infection	20	0
Endemic	53	100
Source of Infection Not Reported/Unknown	28.4%	18.7%
\% of Cases with Known Source of Infection	$79 / 66 \%$	-
Immunization Coverage: MCV1/MCV2		

Measles surveillance performance indicated by country, and area, WHO Western Pacific Region, 2016-2017 as of 20 December 2017

Table 4. Measles surveillance performance indicators by country and area, WHO Western Padific Region, 2016-2017 as of 20 December 2017

Country/area	2016				2017			
	Ditcerbed ron-meask rate per 150000 pap	Second level units with z 2 discarted cases per 100000009 (arnualesd)"	Sunpected criet with aserpate itvestigation	Suspetied caset wet edequate specimers for tabersenry contimation ${ }^{2}$	Anvakimd docarded nat-rremles rate per 150 tco pos	Second level units with a 2 discanded cases per 550000 p0p [anrualimed] ${ }^{\prime}$	Supected cases whth adoquate inver:Igatisn	Saspeted tasen weh adoquate speciners for taterasory confimation ${ }^{2}$
	≥ 2	2805	2805	$2 \mathrm{B0x}$	$z 2$	2 BCx	2 BCx	$280 x$
Asstralia ${ }^{2}$	insufficient dara	Irsumbient data	Irsuffiders data	Insumficost desa	insufticient data	Insufficient data	Ivutilient data	Insutlicient data
Brunei Danussalam	2.8	Whasctictic	100.0\%	100.0\%	0.0	Nat mppilesibe	100.0\%	100.0\%
Cambodis	4.2	72.05	88.3\%	99.0\%	4.7	mink	87.2\%	98.05
Chire	3.2	77.45	97.1\%	87.9x	2.0	51.6\%	97.3\%	90.4\%
Chira, Hong Kong SAR	2.5	Mat asplete	97.9\%	99.5x	0.0	Whemenathe	100.0\%	100.08
Chira, Macso SAR	2.0	Mbt asplette	100.0\%	100.0\%	2.7	Mexparese	88.2\%	100.0\%
Japan	0.7	4,2\%	Irsofficiert data	Isoufficient deta	0.4	0.0\%	Inufficient data	Imuflicient data
Lao People's Democratic Repubil	7.3	70.6\%	98.6\%	47.6\%	4.2	70.6\%	67.8\%	68.75
Malaysia	16.1	93.8x	79.6\%	88.6\%	19.6	93.8x	03.7\%	90.2\%
Mongolia	46.4	98.5\%	8.0\%	14.4x	4.7	13.6\%	93.6\%	93.6\%
New Zealand	1.1	irsofficiert data	Irsofficiert data	Isoufficient desa	0.4	mufficent data	Inuffictent dela	imutlicient data
	\sim	- -		--	\cdots	-	\cdots	-
Prilippines	1.5	17.6\%	57.3x	70.2\%	1.9	29.4x	30.9\%	72.2\%
Republic of Korea	0.6	0.06	92.18	79.98	0.5	0.08	81.3\%	96.45
Singapore	1.6	Shastiotic	85.1\%	51.8\%	1.4	Materaloris	72.68	71.2\%
Viet Nam	1.2	22.74	56.9\%	77.98	2.6	48.7*	57.9\%	77.3\%
Pacific island courtries and areas ${ }^{4}$	7.8	13.0\%	90.1%	89.7\%	2.6	13.0\%	84.3x	95,2\%
Western Pacific Region	3.0	39.06	70.98	67.7\%	2.1	36.0×	88.3\%	88.58
 teses ' Besprts soly confirmedioner 			Oram Yelow Red	Nenchat ornorment taget Suberantally Leciontarget				

Measles surveillance performance indicated by country, and area, WHO Western Pacific Region, 2016-2017 as of 20 December 2017

COUNTRY: PHILIPPINES		2016	2017
Discarded non-measles rate per 100 000 pop	≥ 2	1.5	-
Second level units with ≥ 2 discarded cases per 100 000 pop [annualized]1	$\geq 80 \%$	17.6%	-
Suspected cases with adequate investigation	$\geq 80 \%$	57.3%	-
Suspected cases with adequate specimens for laboratory confirmation 2	$\geq 80 \%$	70.2%	-
Annualized discarded non-measles rate per 100 000 pop	≥ 2	-	1.9
Second level units with ≥ 2 discarded cases per 100 000 pop [annualized]1 Suspected cases with adequate investigation	$\geq 80 \%$	-	29.4%
Suspected cases with adequate specimens for laboratory confirmation 2	$\geq 80 \%$	-	30.9%

TABLE 3. MEASLES SURVEILLANCE PERFORMANCE INDICATORS BY REGION, PHILIPPINES, 2016 vs. 2017

THERE IS A MEASLES OUTBREAK

In Davao, Zamboanga City

Tel No.(1062) 991-3780
Fat No.(062) 991-5421
Figure 2. Distribution of Suspected Measles Cases by Age and Sex ($\mathrm{n}=101$) Zamboanga City, January 1 to February 1, 2018

The above figure shows age range of cases is from less than I year old to more than 40 years old with a median age of 2 . Forty-nine percent (49%) were males and fifty-one percent (51%) were females. Most of the cases (34) belong to the 1 to 5 years age group.

No deaths were reported.

Figure 3. Suspected Measles Cases by Vaccination Status in Zamboanga City ($\mathrm{n}=101$) January 1 to February 1, 2018

Tel No.(062) 991.3780

QUINIPUT	1
RECODO	1
STO. NINO	1
SINUBONG	1
TALABAAN	1
TALON-TALON	1
TALUKSANGAY	1
TETUAN	1
TICTAPUL	1
TIGTABON	1

Table 1. Distribution of Suspected Measles Cases in Zamboanga City, as of February 1, 2018 ($\mathrm{N}=101$)

A city wide catch-up immunization was done to children ages 6 months to 59 months old based on the advisory issued by the Department of Health Regional Office IX, which started last September 2017. Table 2 shows that only 14% of the target population was accomplished due to the lack of supply of syringes (both regional and local) and lack of heatth personnel to conduct thè house-to-house catch-up immunization.

Eligible Population (Target)	Total	\% accomplished
121,947	17,061	14

Table 2. Outbreak Response Immunization to Measles Cases Accomplishment

DISCUSSION:

Measles is an acute highly communicable viral illness and is transmitted through direct contact with nasal or throat secretions of infected persons or by articles freshly soiled with nose and throat secretion. The active surveillance thru case finding is used to detect, investigate, and confirm every suspected measles case in the community in order to prevent potential outbreak. It was noted during interview that majority of the suspected cases did not have any history of vaccination. The only way to prevent the spread of disease in this case is through vaccination and a strong herd-immunity from the community.

IMMUNIZE! IMMUNIZE! IMMUNIZE!

	Signs and Symptoms - Fever - Cough, Runny Nose, Red Eyes - Rash of tiny, red spots that start at the head and spread to the rest of the body Who Are At Risk? - Unvaccinated young children, pregnant women - Any non-immunize person (who has not been vaccinated or was vaccinated but did not develop immunity) can become infected
	How Does Measles Spread? - Coughing - Sneezing - Close personal contact - Direct contact with infected nasal or throat secretions
What is Measles? Measles is a serious respiratory disease (in the lungs breathing tubes) that causes a rash and fever. It is very contagious, in rare cases, it can be deadly With Symptoms Seek Early Consultations in the nearest health centers or hospital	
Citywide mass immunization will start on February 19 to March 23, 2018	

Salamat po!

