Surgical Management of Complicated Pneumonias

Richard S. Nicolas, M.D. Assoc. Clinical Professor Division of Thoracic and Cardiovascular Surgery University of the Philippines

Empyema Thoracis

- Starts as a parapneumonic effusion which is contaminated by adjacent pulmonary infection
- 50-94% parapneumonic fluid collection (Moir C. 1993)
- Mortality rate variable (6-19%)

Incidence of Empyema Thoracis

- 6% empyema thoracis, of all pediatric pneumonia admissions (Goldstraw P. UK 1996)
- 2-8% empyema thoracis (Tan TQ et.al. Pediatrics 2002)

Pleural Fluid Culture

Frequency%
42.9
35.7
5.7
5.7
5.7
4.3

- 1. Exudative phase
- 2. Fibrinopurulent phase
- 3. Organizing phase
 - Andrews et.al. Am Rev Resp Dis 1962 (adapted by American Thoracic Society)

- 2. Fibrinopurulent phase
- 3. Organizing phase

- Exudative phase

 Non loculating fluid, non-echogenic fibrin deposition with normal pleural fluid glucor pH
 Treated with appropriate antibiotics and drainage with thoracentesis or chest tube drainage
- - ibrinopurulent phase Beginning loculation, echogenic fibrin deposition, increase PMN's, dropping pH and glucose levels, rising LDH some degree of lung trapping, grossly purulent Treated with larger bore chest tube drainage, with fibrinolysis ? or early VATS/thoracotomy Droanizing phase
- 3. Organizing phase

- 1. Exudative phase
- Non loculating fluid, non-echogenic fibrin deposition with normal pleural fluid glucose and pH
 Treated with appropriate antibiotics and drainage with thoracentesis or chest tube drainage
- 2. Fibrinopurulent phase

 - Beginning loculation, echogenic fibin deposition, increase PMN's, dropping pH and glucose levels, rising LDH some degree of lung trapping, grossly purulent Treated with larger bore chest tube drainage with fibrinolysis? or early VATS/thoracotomy

- Useful in designing treatment regimen especially when it involved early surgical intervention
- · Was not a good predictor of outcome
- · Dependent on the interpretation of sonogram or CT scan

Hoff, et.al. J Ped Surg 1989

- Presence of Peel
- Scoliosis
- Gram(-) and anaerobes in culture
- Atypical cultures
- pH < 7.2
- Glucose <40mg/dL

• Each variable given a score of 1

ESS = 0 mild disease ESS = 1 moderate disease

- ESS = 2 severe disease
- Better predictor for outcome

- Wong et.al. Ind J Peds 2005
- 1. Clinical Features

 - Fever > 39°C
 > 7 days before initial admission
 Tachycardia 140/min
 Tachypena >40/min
 Abdominal pain
 Required volume expansion
 Inotropic support
 Ventilatory support

- Wong et.al Ind J Peds 2005
- 1. Clinical Features

2. Laboratory

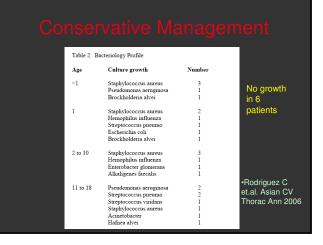
- WBC < 4 x 10⁹/L
 Platelet count < 100 x 10⁹/L
 PT > 15 seconds
- BUN > 8 μmol/L

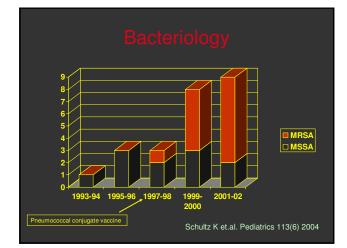
- Creatinine > 110 mmol/L
 Pleural pH <7.1
 Gross pus on pleural aspirate

- Wong et.al Ind J Peds 2005
- 1. Clinical Features
- 2. Laboratory
- 3. Radiographic Findings
 - Bilateral involvement
 - Empyema thickness > 3 cm on CT scan
 Multiple loculations
 Empyema involving > 1/3 of hemithorax
 Presence of air-fluid levels

Each criteria assigned a value of 1 (20 maximal score)

- Wong et.al Ind J Peds 2005
- 1. Clinical Features


- Laboratory
 Radiographic Findings
 Each criteria assigned a value of 1 (20 maximal score)


A score of 4 or more predicted almost a 5 fold increase likelihood of surgical intervention

- Drainage should not be withheld!
- Rodriguez C et.al. Asian CV Thorac Ann 2006

Table 1. Age of Patients with Empyema Thoracis

Age	Number	(%)
<=1	12	39
2 to 10	6	19
11 to 10	13	42

Conservative Management

Time (days)	No. of Cases	(%)
No re-expansion	24	71
1 to 7	2	6
8 to 14	3	9
15 to 21	1	3
Unknown	4	12

Time for Radiographic Re-expansion

•Rodriguez C et.al. Asian CV Thorac Ann 2006

Conservative Management

	Duration of Drainage		Duration to Conversion To Open Drainage		Length of Hospit	aliz:
Days	Number	%	Number	%	Number	%
1-7	4	12	6	23	0	0
8-14	5	15	10	38	2	6
15-21	1	3	7	27	4	12
22-28	0	0	1	4	9	27
>=29	3	9	1	4	17	52
>= 57	1	3	1	4	1	3
>= 85	б	18	-	-		-
?	14	41	-	-	-	-

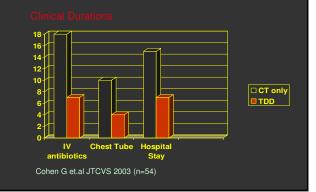
•Rodriguez C et.al. Asian CV Thorac Ann 2006

Conservative Management

Treatment Outcome	Number	(%)
Chest Tube Removed	7	20
Recurrence	2	6
Open Drainage	26	74
Modified Heimlich Valve	10	29
$MHV \rightarrow Tube Removed$	1	3
$MHV \rightarrow demise$	1	3
Open Tube Drainage	16	46
Open Tube → Tube Removed	4	11
Recurrence	1	3
Demise	2	6

•Rodriguez C et.al. Asian CV Thorac Ann 2006

Conservative Management


Conclusions

- Conservative management associated with considerable hospital stay, length of chest tube placement and mortality (8.8%)*
- Failure rate is high and early surgery is warranted for complicated empyema

Conservative Management

- * Unique population of service patients where some variables are not controlled
 - Isolation
 - Antibiotic therapy
 - Availability of VATS
 - Chest tube care

Thoracotomy vs Conservative

Fibrinolytic Therapy

- Mode of action (improves drainage of fluid)
 - Lyse fibrinous strands
 - Clears lymphatic pores
- Streptokinase, urokinase, alteplase, rTPA
- 11 clinical trials comparing to surgery, one was RCT
- Variable protocols

Fibrinolysis vs VATS

Variable	VATS $(n = 30)$	Urokinase (n = 30)	p Value
Sex, no.			
Females	14	13	0.79
Males	16	17	
Ape, yr			
Median	3.57	3.07	0.355
Intercuartile range	2.28-7	2.28-5.38	
liness days before admission	10 (6-34)	9 (2-37)	0,458
liness days before intervention	11 (6-37)	9 (5-38)	0.263
Pre-op days after admission	1 (0-3)	1 (0-3)	0.071
WBC × 10%L			
Median	18	15.22	0.223
Interguartile range	10.8-23.3	10.6-20.4	
CRP, mgA			
Median	153	183	0.744
Interguartile range	96-241	45-292	
Platelets × 10%L			
Median	500	476	0.59
Interpuartile range	370-640	352-682	
Hb. o/dL			
Median	10.1	10.05	0,740
Interpuartile range	8.7-11.4	8.6-11.2	
Pleural fluid LDH, U/L	n = 17	n - 24	
Median	10.000	6.953	0.368
Intersuartile range	4880-20.000	2.992-16.554	
Pleural fluid albumin, o/L	n = 17	n = 24	
Median	21	21.5	0.151
Interpuartile range	20-29	20-46	
Pleural fluid WBC	n = 24	n = 23	
+/-	21/3	21/2	0.79
Fever days after intervention	2.5 (0-10)	2.5 (0-25)	0.635
O ₂ supplementation	12	12	1
Microbiology (positive blood or fluid culture and/or PCR)			
S. preumaniae	18	13	0.196
Other organisms	3	6	0.317

Sonnappa S et.al Am J Respir Crit Care Med 174 2006

Fibrinolysis vs VATS

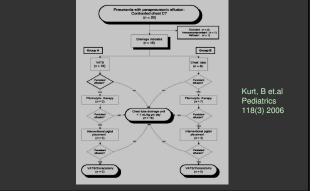
- Protocol
 - < 1 year old
 - 10,000 U in 10 cc every 12 h for 3 days
 - >1 year old 40,000 U in 40 cc every 12 h for 3 days

Urokinase chosen for availability, cost, and commonly used in pediatric age groups

Fibrinolytic vs VATS

- Intention to treat (crossover)
- Failure defined as persistent fever 4 days after initial fibrinolysis administration
- Treatment failure
 - 5 in FT required VATS
 - 4 in VATS converted to open minithoracotomy
 - Not statistically significan

Fibrinolysis vs VATS


Conclusions

- Marginally significant length of chest tube placement in favor of VATS (p = 0.055)
- No difference in hospital LOS
- Significant difference in total hospital costs in favor of fibrinolysis

Fibrinolysis vs VATS

- VATS was highly skill dependent which would account for the high conversion rate
- Disadvantage is fibrinolytic therapy makes surgery more difficult

VATS vs Thoracostomy

Variable	Thoracostomy (n = 8)	VATS (n - 10)	Р
Length of stay, d	13.25 ± 7.15	5.80 ± 2.82	.004
Days of tube drainage	9.63 ± 5.45	2.80 ± 0.63	<.001
Fever duration, d	6.25 ± 4.10	3.60 ± 2.95	.146
Oxygen need, d	3.63 ± 5.71	1.60 ± 1.26	.965
Narcotic use, d	7.63 ± 6.32	2.20 ± 1.48	.043
No. of CXRs	16.75 ± 9.90	8.10 ± 2.33	.016
No. of chest CT scans	3.13 ± 1.25	1.0 ± 0.00	<.001
No. of procedures	2.25 ± 1.91	1.0 ± 0.00	.002
Procedure time, min	30.00 ± 6.93	47.44 ± 14.59	.016
Sedation time, min	80.63 ± 28.96	86.20 ± 17.42	.460
Need for fibrinolysis	2.63 ± 2.07	0	.001
Facility charges, \$	18 447 (13 931-29 562)*	12 988 (10 799-15 606)*	.016
Physician charges, \$	4414 (3718-7896)*	6668 (5634-7291)·	.146
Total charges, \$	21 947 (17 895-37 458)*	19714 (17325-23000)*	.315

Kurt, B et.al Pediatrics 118(3) 2006

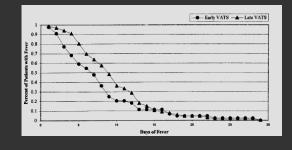
VATS vs Thoracostomy

Conclusions

 Early VATS for primary empyema in stage 1 and 2 is superior to tube thoracostomy

(No failure rates for VATS)

Video Assisted Thoracoscopic Surgery


- When to intervene?
- Texas Children's Review (n=230 10 year review)

Schultz K et.al. Pediatrics 113(6) 2004

Early vs Late VATS

- N = 49 early VATS (within 48 hours of admission)
- N = 78 late VATS (> 48 hours from admission)

Early vs Late VATS

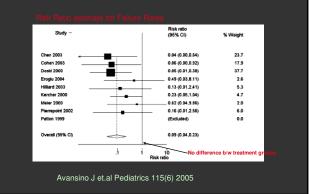
Schultz K et.al. Pediatrics 113(6) 2004

Early vs Late VATS

	Early VATS	Late VATS	P Value
LOS (all patients)	11.49 ± 6.56	15.18 ± 8.62	.008
Age Admission service, %	5.01 ± 4.23	3.78 ± 3.24	NS .04
General pediatrics	51	67	
Pulmonary Surgery	26 12	20	
Other	12	12	
LOS (Texas Children's	9.91 ± 2.95	12.34 ± 2.80	.027
Hospital admission only)			

Schultz K et.al. Pediatrics 113(6) 2004

Early vs Late VATS


	Early $(n = 46)$	Late* $(n = 79)$
Lung abscess	3	4
Pneumatocele	2	7
Bronchopleural fistula	1	1
Respiratory failure (before or after procedure)	5	6
Blood transfusion	9	18
Air leak >24 h	3	5
Lobectomy	3	3

Schultz K et.al. Pediatrics 113(6) 2004

Early vs Late VATS

 Early VATS is safe for complicated empyemas and shows to decrease LOS, and trends towards quicker resolution of fever

Non operative vs Primary operative

Non operative vs Primary operative

	Nonoperative Therapy		Primary Operative The $(n = 363)^*$	
	Chest Tube and Antibiotics (n = 3183)	Primary Fibrinolytic Therapy (n = 64)	VATS (n = 176)	Thoracotomy $(n = 175)$
Age, y (cases/studies)	5 (1691/35)	4.1 (64/3)	5.1 (176/13)	6.7 (99/6)
Mortality rate, % (cases/studies)	3.3 (3250/50)	0(64/3)	0(176/13)	0(166/11)
Failure rate, % (cases/studies)	23.6 (2793/44)	9.4(64/3)	2.8 (176/13)	3.1 (128/9)
Length of stay, d (cases/studies)	20.0 (1671/33)	10.7 (64/3)	11.2 (150/10)	10.6 (122/8)
Chest tube, total d (cases/studies)	10.6 (1566/28)	4(14/1)	4(144/8)	6.2 (22/2)
Antibiotics, d (cases/studies)	21.3 (381/12)	NS	13.2 (56/4)	NS
Complication rate, % (cases/studies)	5.6 (1094/22)	12.5 (64/3)	5.4 (168/11)	5.2 (77/5)

Conclusions

Primary operative therapy is associated with a lower in-hospital mortality rate, lower reintervention rate, LOS, duration of tube drain, and time of antibiotic therapy compared to the non-operative group

Consider Local Multi-Center Trial

- · Define failure of medical management
 - Days of antibiotic therapy
 - Clinical/radiographic parameters
- Define Severity Scoring
- Primary outcome measures
 - Hospital stay after final intervention
 - QOL questionnaire at one month after discharge

Thank You