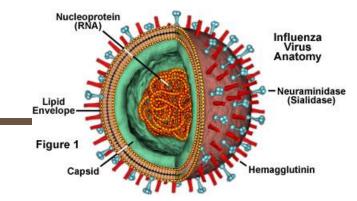


Influenza vaccine

Revisiting Old and Addressing Current Issues

Dr. Leilani T. Sanchez, DPPS, DPIDSP Manila, 18 February 2016

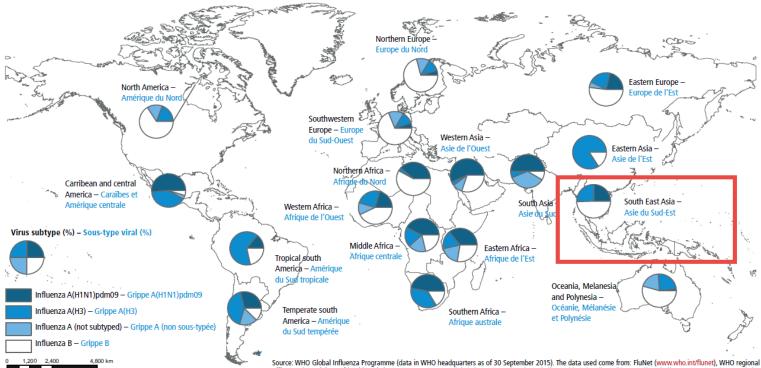

Influenza B pose less of a disease burden than Influenza A

There is only one B strain circulating every influenza season

> Influenza B is not as severe as Influenza A

Influenza B

- Influenza B predominately circulates in human populations
- There are 2 antigenically and genetically distinct lineages
 - B/Victoria/2/87- like (Victoria lineage)
 - B/Yamagata/16/88-like (Yamagata lineage)
- Antibody responses to influenza B infection in children are lineage specific, with no cross reactivity between lineages
- Children accumulated natural immunity to influenza B more slowly than to influenza A.


Rota PA, Wallis TR, Harmon MW,Rota JS, Kendal AP, Nerome K. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology. 1990:175(1):59---68

Bodewes R, de Mutsert G, van der Klis FR, Ventresca M, Wilks S, Smith DJ, et al. Prevalence of antibodies against seasonal influenza A and B viruses in children in Netherlands. Clin Vaccine Immunol 2011; 18:469-76

WHO Review of the 2015 influenza season in the southern hemisphere

Map 1 Distribution of influenza virus subtypes by influenza transmission zone, May 2015 to September 2015

Carte 1 Distribution des sous-types de virus grippaux par zones de transmission de la grippe, mai 2015-septembre 2015

offices and/or ministry of health websites. - Programme mondial de lutte contre la grippe de l'OMS (données disponibles au siège de l'OMS, 30 septembre 2015); les données utilisées proviennent de FluNet (www.who.int/flunet), des sites Internet des Bureaux régionaux de l'OMS et/ou des Ministères de la Santé

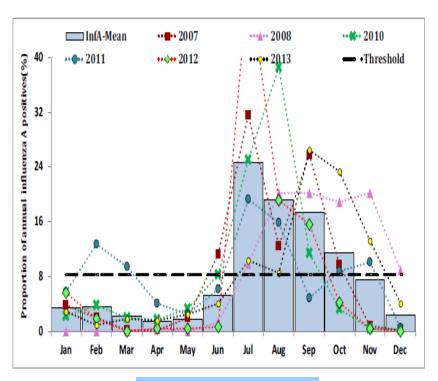
Note: the available country data were joined in larger geographical areas with similar influenza transmission patterns to be able to give an overview (www.who.int/ influenza/surveillance_monitoring/updates/EN_GIP_Influenza_transmission_zones.pdf). - Note: les données disponibles relatives aux pays ont été regroupées par zones géographiques plus larges où les modalités de transmission sont similaires de manière à fournir un tableau synoptique(www.who.int/influenza/surveillance monitoring/ updates/EN GIP Influenza transmission zones.pdf)

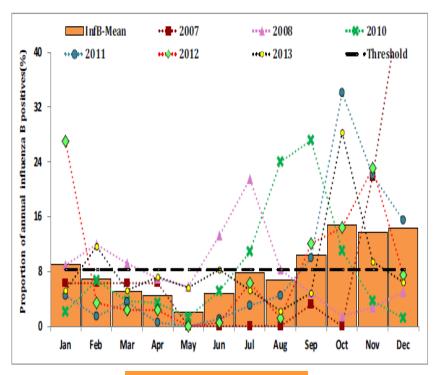
The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. – Les appellations employées dans la présente publication et la présentation des données qui y figurent n'impliquent de la part de l'Organisation mondiale de la Santé aucune prise de position quant au statut juridique des pays, territoires, villes ou zones, ou de leurs autorités, ni quant au tracé de leurs frontières ou limites. Les lignes en pointillé sur les cartes représentent des frontières approximatives dont le tracé peut ne pas avoir fait l'objet d'un accord définitif.

© WHO 2015. All rights reserved. - © OMS 2015. Tous droits reserves.

WHO. Review of the 2015 influenza season in the southern hemisphere – November 2015. Wkly Epidemiol Rec. 2015;90:645-660.

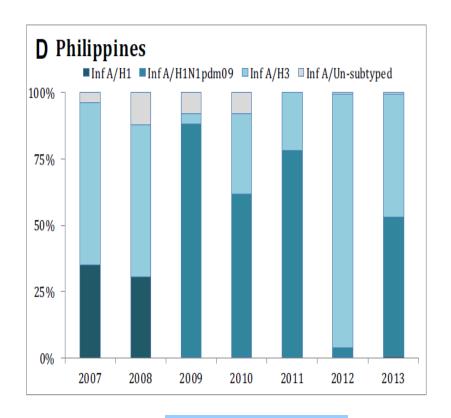
Epidemiological and Virological Characteristics of Influenza in the Western Pacific Region, 2006-2010

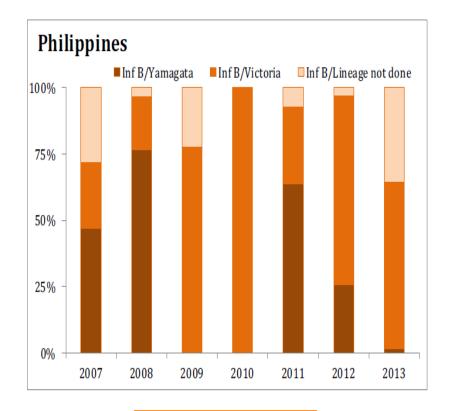

Table 2. Specimens tested and specimens positive for influenza by type/subtype/lineage in Western Pacific Region countries, 2006–2010. ^


	2006 °	2007 ¹	2008 ²	2009 ³	2010 ³
Number of specimens tested	65,103	92,939	94,274	366,164	307,584
Number of influenza positive specimens	7,425 (11.4%)	11,143 (12.0%)	11,025 (11.7%)	115,554 (31.6%)	51,573 (16.8%)
Influenza positive specimens by type/subtype					
Influenza A total	4,393	7,297	7,426	110,668	26,008
A(H1)	2,952	907	4,241	6,307	31
A(H1N1)pdm09	0	0	0	74,252	10,728
A(H3)	918	5,397	1,961	19,018	12,276
A(subtyping not performed)	523	993	1,224	11,091	2,973
Influenza B total	3,032	3,846	3,599	4,886	25,565
B(Victoria)	744	927	827	1,532	4,505
B(Yamagata)	76	1,642	1,360	235	954
B(lineage not determined)	2,212	1,277	1,412	3,119	20,106

Members of the Western Pacific Region Global Influenza Surveillance and Response System (2012) Epidemiological and Virological Characteristics of Organization, 2006–2010. PLoS ONE 7(5): e37568. doi:10.1371/Influenza in the Western Pacific Region of the World Health journal.pone.0037568

Influenza in the Philippines

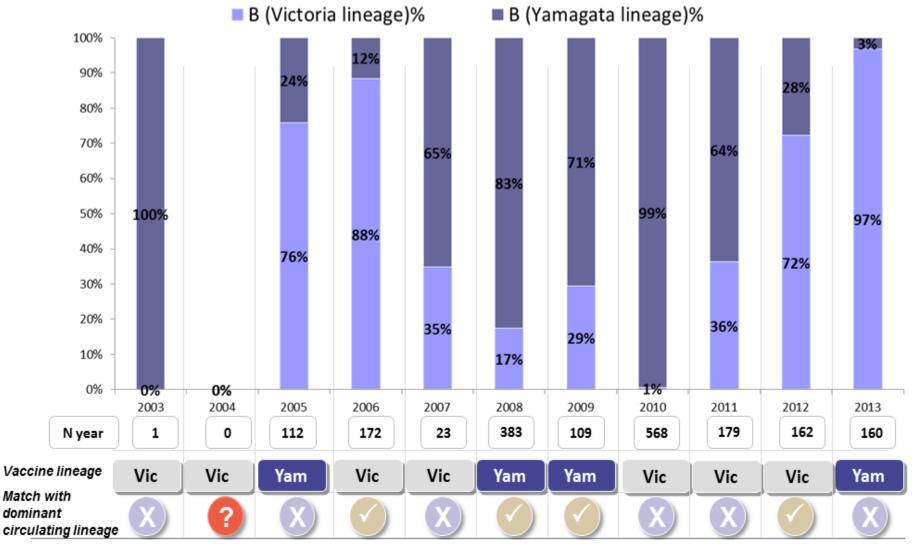



Influenza A

Influenza B

Saha et al. (2016) Divergent seasonal patterns of influenza types A and B across latitude gradient in Tropical Asia. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12372

Influenza in the Philippines


Influenza A

Influenza B

Saha et al. (2016) Divergent seasonal patterns of influenza types A and B across latitude gradient in Tropical Asia. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12372

Influenza in the Philippines

Circulating Influenza B lineages 2003 -2013

Burden of Influenza B

- Although influenza B causes disease in all age groups, its incidence related to influenza A appears to be highest among older children and young adults.
- While influenza B causes mortality in all age groups, it appears to be a disproportionate cause of pediatric influenza deaths

Among US pediatric influenza deaths between 2004 and 2011, excluding the 2009---2010 pandemic, 22% to 44% of deaths each season were confirmed to be influenza B-related

Ambrose, C. and M. Levin, The rationale for quadrivalent influenza vaccines. Human Vaccines & Immunotherapeutics, 2012. 8(1): p. 81-88. Seasonal flu. Atlanta, GA: Centers for Disease Control and Prevention; 2011. Available at: http://www.cdc.gov/ flu. Glezen WP et al. The Burden of Influenza B: A Structured Literature Review. Am J Public Health. 2013 Mar; 103(3):e43-51

Burden of Influenza B

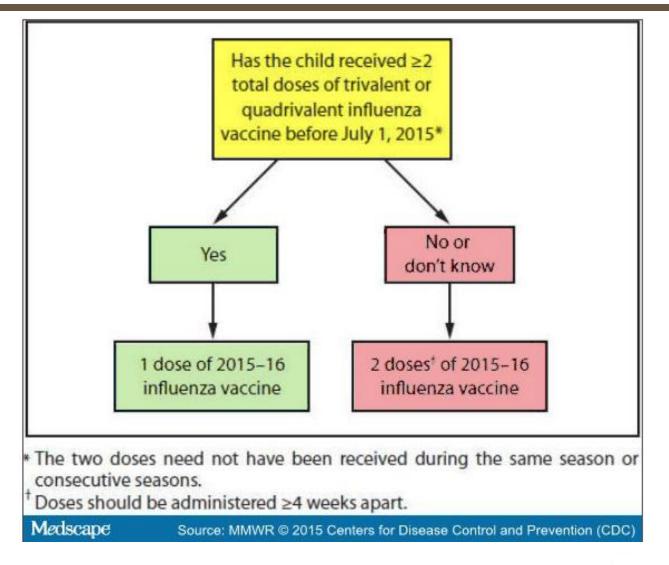
- The influenza B attributable primary respiratory and circulatory hospitalization rate in the United States was a substantial
 - Infuenza A(H3N2) 99.0 per 100,000
 - Influenza B 81.4 per 100,000
 - Influenza A (H1N1) 55.9 per 100,000
- In Hong Kong, influenza B hospitalization rates varied by age
 - Highest rates observed in 2 4 year olds (43.5 per 10,000)

Thompson WW, Shay DK, Weintraub E, et al. Influenza-associated hospitalizations in the United States. JAMA. 2004;292(11):1333---1340 Chiu SS, Chan KH, Chen H, et al. Virologically confirmed population-based burden of hospitalization caused by influenza A and B among children in Hong Kong. Clin Infect Dis. 2009;49(7):1016---1021.

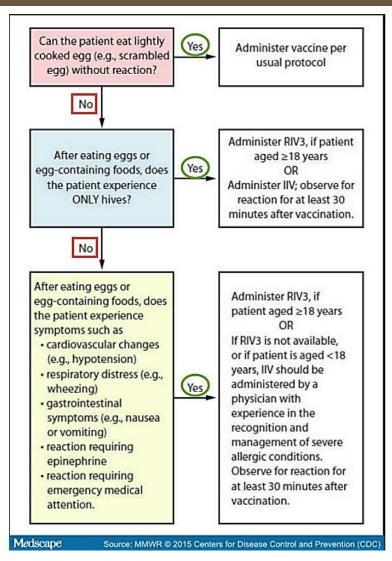
Glezen WP et al. The Burden of Influenza B: A Structured Literature Review. Am J Public Health. 2013 Mar;103(3):e43-51

Influenza vaccines locally available

Name	Brand	Туре	Preparation
Influvac	Abbott	TIV Sub-unit	0.5 ml
Fluarix	GSK	TIV Split virion	0.5 ml
Vaxigrip	Sanofi	TIV Split virion	0.5 ml
FluQuadri	Sanofi	QIV Split virion	0.5ml and 0.25ml



WHO recommendations on the composition of influenza virus vaccines


Year	Northern Hemisphere	Year	Southern Hemisphere	Comment
2013- 2014	an A/California/7/2009 (H1N1)pdm09-like virus; an A/Texas/50/2012 (H3N2)-like virus; a B/Massachusetts/2/2012-like virus	2014	an A/California/7/2009 (H1N1)pdm09-like virus; an A/Texas/50/2012 (H3N2)-like virus; a B/Massachusetts/2/2012-like virus	Same
2014- 2015	an A/California/7/2009 (H1N1)pdm09-like virus; an A/Texas/50/2012 (H3N2)-like virus; a B/Massachusetts/2/2012-like virus a B/Brisbane/60/2008-like virus	2015	an A/California/7/2009 (H1N1)pdm09-like virus; an A/Switzerland/9715293/2013 (H3N2)-like virus; a B/Phuket/3073/2013-like virus a B/Brisbane/60/2008-like virus	2/4 different
2015- 2016	an A/California/7/2009 (H1N1)pdm09-like virus an A/Switzerland/9715293/2013 (H3N2)-like virus a B/Phuket/3073/2013-like virus B/Brisbane/60/2008-like virus	2016	an A/California/7/2009 (H1N1)pdm09-like virus an A/Hong Kong/4801/2014 (H3N2)-like virus a B/Brisbane/60/2008-like virus a B/Phuket/3073/2013-like virus	1/4 different

Dosing in Children Aged 6 months – 8 years old

Vaccination of Persons with a History of Egg Allergy

- Persons with a history of egg allergy who have experienced only hives after exposure to egg should receive flu vaccine
- A previous severe allergic reaction to influenza vaccine, regardless of the component suspected of being responsible for the reaction, is a contraindication to future receipt of the vaccine.

