

TAMING THE BEASTS: TOP KILLERS OF CHILDREN Pneumonia, a Global Perspective

William Hausdorff, PhD

Vaccine Development Leader, Pneumococcal Vaccines GlaxoSmithKline Biologicals, Wavre, Belgium Disclosure of Potential Conflicts of Interest

I have been involved in the development of several pneumococcal conjugate vaccine candidates, including:

- 7-, 9-, and 13*-valent CRM formulations when employed by Wyeth Vaccines
- The pneumococcal *Haemophilus influenzae* protein D conjugate vaccine (PHiD-CV) with my current employer GlaxoSmithKline Biologicals.

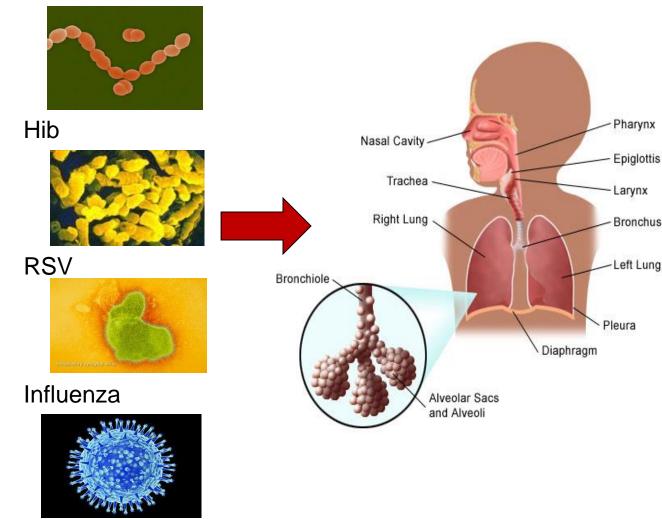
*patent holder receiving no royalties

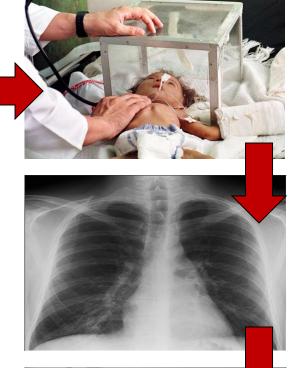
Outline

- Global epidemiology of childhood pneumonia
 - A brief summary of recent analyses (thanks to Prof Igor Rudan!)
- Pneumococcal conjugate vaccine candidates and their impact on pneumonia
 - What have we learned?
- Are there other bacterial pathogens to target in addition to pneumococcus?

Outline

- Global epidemiology of childhood pneumonia
 A brief summary of recent analyses
- Pneumococcal conjugate vaccine candidates and their impact on pneumonia


– What have we learned?


• Are there other bacterial pathogens to target in addition to pneumococcus?

PNEUMONIA: DEFINING AND MEASURING THE BURDEN OF DISEASE

S. pneumoniae

BIO/SYN/0022/11

Slide with courtesy from Prof. I. Rudan

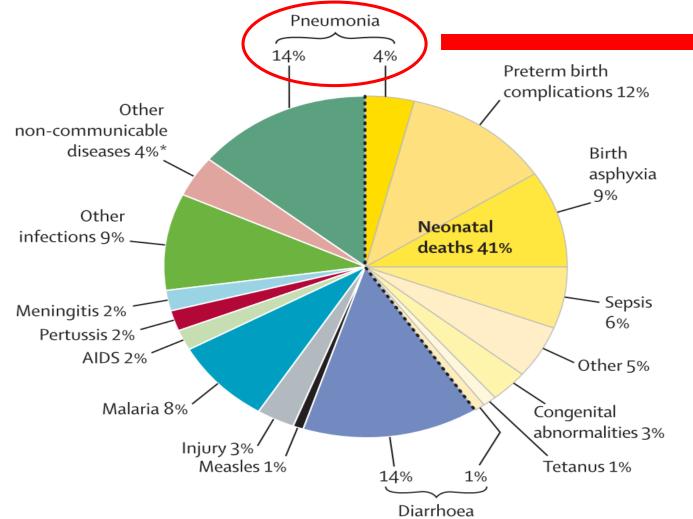
PNEUMONIA: BURDEN

- New episodes each year globally in children 1 mo 5 y (year 2000):
 - ~156 million according to WHO clinical definition (~50 million X-ray positive)

• 12–15% are severe episodes requiring hospitalisation: (~20 million cases)

• CFR for community-acquired pneumonia ~1%; for severe pneumonia ~7–10%

• Number of deaths globally: 1,575,000


350,000 in neonatal period and 1,225,000 in children 1 mo – 5 y

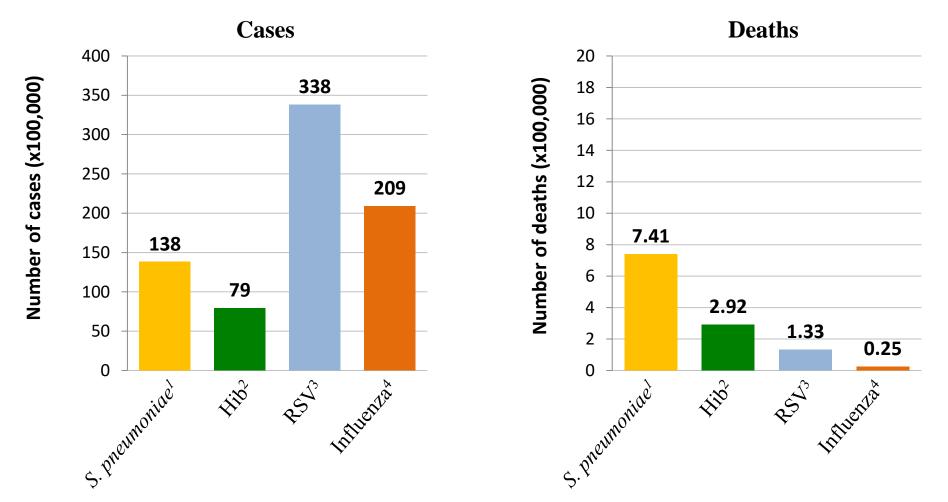
Slide with courtesy from Prof. I. Rudan BIO/SYN/0022/11

Rudan et al. Bull World Health Org 2008;86:408-41; Theodoratou et al. in press

ALL-CAUSE PNEUMONIA MORTALITY IN CHILDREN

Approximately one in every five deaths is attributed to pneumonia

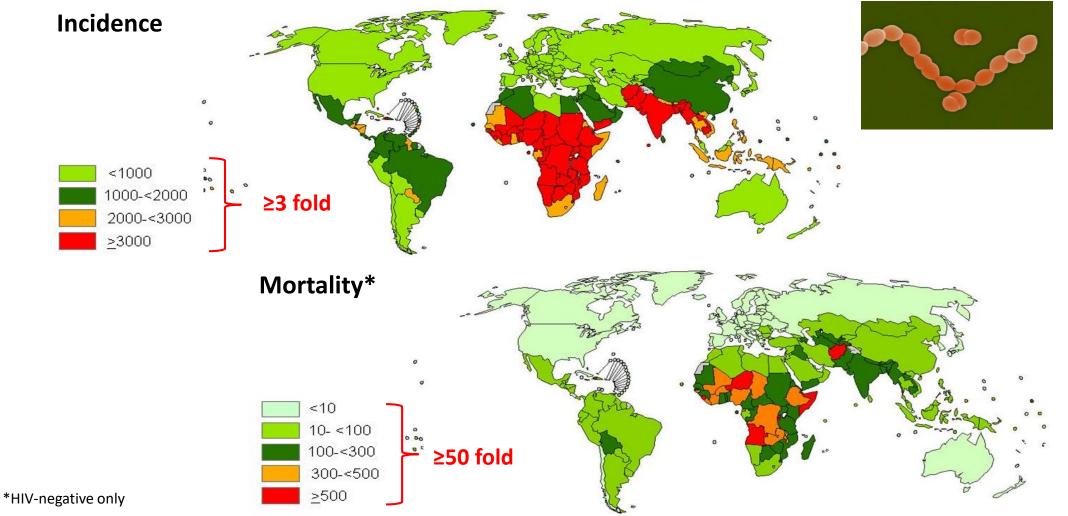
S. pneumoniae causes around 11% of all deaths in children aged 1–59 months²


Of all pneumococcal deaths in this period²... 90% from pneumonia 7% from meningitis 3% from serious nonpneumonia, non-meningitis clinical syndromes

BIO/SYN/0022/11 Slide with courtesy from Prof. I. Rudan

1. Figure from Black et al. Lancet 2010;375:1969-87; 2. O'Brien et al. Lancet 2009;374:893-902

AETIOLOGY OF CHILDHOOD PNEUMONIA CASES AND DEATHS: GLOBAL ESTIMATES



1. O'Brien et al. Lancet 2009;374:893-902; 2. Watt et al. Lancet 2009;374:903-11; 3. Nair et al. Lancet 2010;375:1545-55; 4. Nair et al. in press

PNEUMOCOCCAL INCIDENCE AND MORTALITY RATE

In children aged 1–59 months per 100,000

THE PASE ASE SOCIETY

 http://www.who.int/immunization_monitoring/burden/Pneumo_hib_estimates/en/index2.html [accessed June 2011] WHO date of slide

 BIO/SYN/0022/11
 Slide with courtesy from Prof. I. Rudan

 3 Aug 2009

Outline

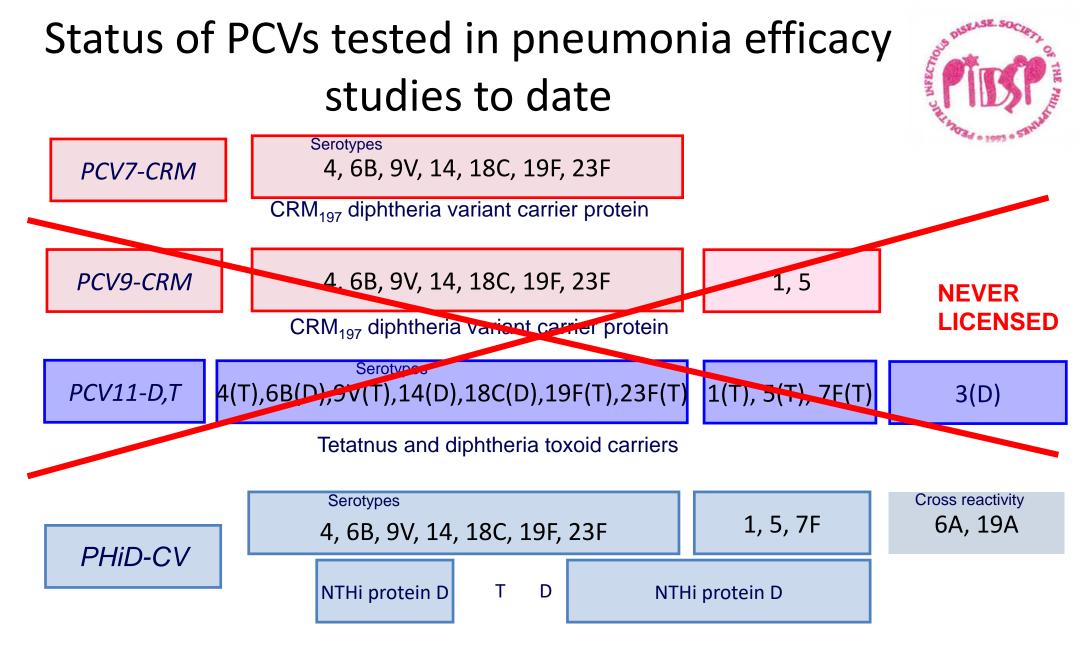
- Global epidemiology of childhood pneumonia
 A brief summary of recent analyses
- Pneumococcal conjugate vaccine candidates and their impact on pneumonia
 - What have we learned?

• Are there other bacterial pathogens to target in addition to pneumococcus?

IDSA GUIDELINES

The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America

- Children should be immunized with vaccines for:
 - S. pneumoniae
 - *H. influenzae* type b
 - Pertussis
 - > 6 mos. : annual influenza vaccine
 - (measles too!)

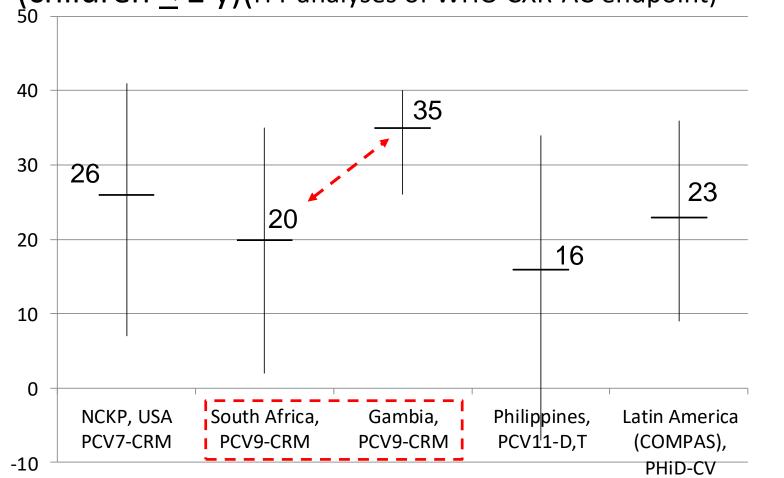


Pneumococcal conjugate vaccine (PCV) candidates tested in pneumonia efficacy studies to date

					" ad a 1993 a 5%"		
PCV7-CRM	Serotypes 4, 6B, 9V, 1 4	, 18C, 19F,	23F				
PCV9-CRM	4, 6B, 9V, 14	, 18C, 19F,	23F	1, 5			
	CRM ₁₉₇ diphtheria	a variant carr	ier protein				
PCV11-D,T 4(1	Serotypes (D),6B(D),9V(T),14(D)),18C(D),19	F(T),23F(T)	1(T), 5(T), 7F(T)	3(D)		
Tetatnus and diphtheria toxoid carriers							
	Serotypes 4, 6B, 9V, 1 4	, 18C, 19F, 2	23F	1, 5, 7F	Cross reactivity 6A, 19A		
PHiD-CV	NTHi protein D	ΤD	NTH	li protein D			

Prevnar[™] and Prevenar13[™] SPCs; Park IH, et al. J Infect Dis. 2008;198(12):1818-22; <u>http://www.who.int/immunization/sage/target_product_profile.pdf</u>; *Synflorix*[™] SPC, 2009; PIDJ supplement volume 28, Number 4, April 2009; Vesikari T, et al. Pediatr Infect Dis J 2009;28(4 Suppl):S66-76; Prymula R, et al. Lancet 2006;367:740-748; Lucero et al PIDJ 2009

Prevnar[™] and Prevenar13[™] SPCs; Park IH, et al. J Infect Dis. 2008;198(12):1818-22; http://www.who.int/immunization/sage/target_product_profile.pdf; Synflorix[™] SPC, 2009; PIDJ supplement volume 28, Number 4, April 2009; Vesikari T, et al. Pediatr Infect Dis J 2009;28(4 Suppl):S66-76; Prymula R, et al. Lancet 2006;367:740-748; Lucero et al PIDJ 2009


Key characteristics of efficacy trials assessing PCV impact on pneumonia

	N.California (NCKP),USA ¹	Soweto, South Africa ²	The Gambia ³	Bohol, The Philippines ⁴	COMPAS LatinA ⁵
Study vaccine	7vCRM Wyeth/Pfizer, Licensed	9vCRM Wyeth/Pfizer, Not licensed	9vCRM Wyeth/Pfizer, Not licensed	11vDT Sanofi-Pasteur, Not licensed	PHiD-CV GSK, Licensed
Cohort size	~37,800	~39,800	~17,400	~12,200	~24,000
Immunization schedule	2, 4, 6 & 12-15 mos	6, 10, 14 wks	6, 10, 14 wks	6, 10, 14 wks	2, 4, 6 & 15-18 mos
Setting	Urban	Urban	Rural	Rural/Urban	Mainly urban

1.Black S. 2002 PIDJ 2.Klugman KP, 2003, NEJM 3. Cutts F2005 Lancet 4.Lucero MG,2009 PIDJ **5.**Tregnaghi et al., XIV SLIPE, Punta Cana, May 2011; Tregnaghi et al., 29th ESPID, The Hague, June 2011

Lesson #1: 4 different PCVs demonstrated similar efficacies against consolidated pneumonia (children < 2 y)(ITT analyses of WHO CXR-AC endpoint)

Similar efficacies despite different immunogenicity, study settings, vaccine formulations, etc Most striking point-estimate difference is between the two PCV9-CRM studies

1. Black et al., Ped Infect Dis J, 2002; 2. Klugman et al., New Engl J Med, 2003; 3. Cutts et al., Lancet, 2005; 5. Hansen et al., Ped Infect Dis J, 2006; 4. Lucero et al., Ped Infect Dis J 2009; 1. Tregnaghi et al., XIV SLIPE, Punta Cana, May 2011; 2. Tregnaghi et al., 29th ESPID, The Hague, June 2011

Why is effect of conjugates on alveolar consolidated pneumonias limited to 23-37%? Is pneumococcus not as important as we thought?

- Results likely underestimate importance of pneumococcus:
 - Vaccine efficacy undoubtedly <100%
 - There are other pneumococcal serotypes besides those preventable by vaccine formulations
 - Possibly some replacement disease by non-vaccine types or other pathogens

• Involvement of other pathogens?

Lesson #2: PCVs also prevent pneumonias <u>without</u> alveolar consolidation as defined by WHO

		N.California (NCKP,US) ^{1,2} 7vCRM		The Gambia ⁶ 9vCRM	Bohol, The Philippines ⁷ 11vDT	COMPAS Latina ⁸ PHiD-CV**	
Clinical CAP	ITT	6% (-2,11)	7% (-1,14)	6% (1, 11)	1% (-10,7)	7% (2,12)	
Relatively small percentages which translate into a large number of cases prevented due to high burden of clinical CAP							
ITT: Intent-to-treat analysis							

**Final results (from conclusive interim analysis)

1.Black S. 2002 PIDJ; 2.Hansen J, 2006 PIDJ; 3.Klugman KP, 2003, NEJM 4.Madhi SA, Klugman KP, 2007 Vaccine; 5. Madhi 2005 CID; 6. Cutts F2005 Lancet 7. Lucero MG,2009 PIDJ

⁸Tregnaghi et al., 29th ESPID, The Hague, June 2011; 2.10PN-PD-DIT-028; NCT00466947

Lesson #3: PCVs prevent virus-associated pneumonia

(presumably due to superinfection with pneumococcus)

		All obi	drop	
Clinical diagnosis	Vaccine <i>n</i> = 18,245	All chil Placebo n = 18,268	Efficacy	<i>P</i> value
Total number of pneumonia cases ^a	544	679	20 (10, 28)	0.00009
Pneumonia with alveolar consolidation ^b	251	303	17 (2, 30)	0.03
Pneumonia without identified virus ^c	419	486	14 (2, 24)	0.03
Any identified virus- associated pneumonia ^d	160	231	31 (15, 43)	0.0004
Influenza A	31	56	45 (14, 64)	0.01
RSV	90	115	22 (-3, 41)	0.08
PIV types 1–3	24	43	44 (8, 66)	0.02
Adenovirus	14	15	7 (–94, 55)	0.9
le for Streptococcus	pneumoni	ae in virus	-associa	ted pneu

South Africa study with PCV9-CRM

pp.811-813

VOLUME 10 | NUMBER 8 | AUGUST 2004 NATURE MEDICINE

Shabir A Madhi¹, Keith P Klugman^{1,2} & The Vaccine Trialist Group

Lesson #4: In 3 of the 4 trials where data are available, effect on pneumonia seemed to wane rapidly

Age Group (mos)	VE %	95% CI					
Northern California (Black PIDJ 2002)							
<12	32.2	(3.3-52.5)					
12-24*	~15%						
≥24	↓ 9.1	(-30.9-36.8)					
Philippines (Lucero PIDJ 2009)	Philippines (Lucero PIDJ 2009)						
3-11	34.0	(4.8-54.3)					
12-23	✓ 2.7	(-43.5-34.0)					
South Africa (Klugman NEJM 2003; personal communication S. Madhi)	"Loss of efficacy >24 mo also seen"						
The Gambia (Cutts Lancet 2005)							
3-11	35	(19 -48)					
12-23	38	(25-49)					
24-29	32	(-10-58)					
Latin America (Tregnaghi SLIPE 2011)	Age-stratifie	d data not yet available					

*12-24 mo efficacy estimated from published <24 mo efficacy of 23.4 % (5.2-38.1)

Possible explanations:

- 1. Waning vaccine efficacy?—but IPD efficacy through 5y in S. Africa trial; NCKP trial included booster dose
- 2. Other pathogens/serotypes are more important causes of consolidated pneumonia in older ages?

Outline

- Global epidemiology of childhood pneumonia
 A brief summary of recent analyses
- Pneumococcal conjugate vaccine candidates and their impact on pneumonia

– What have we learned?

• Are there other bacterial pathogens to target in addition to pneumococcus?

What other pathogens cause lower respiratory tract infections in children?

At least 1 respiratory pathogen was identified in 79% (122 of 154) of the patients.

TABLE 1. Pathogens Identified in 154 Hospitalized Children with Community-Acquired LRIs

Pathogen		Total No. of		
	No Coinfection	Coinfection With Bacteria*	Coinfection With Viruses*	Episodes, %
Bacteria				
S pneumoniae	35	12	21	68 (44)
S pyogenes	0	2	2	2 (1)
S aureus	0	2	0	2 (1)
S milleri	0	1	1	1 (<1)
M pneumoniae	11	6	8	21 (14)
C pneumoniae	6	7	7	14 (9)
M tuberculosis	1	1	0	2 (1)
C trachomatis	0	0	0	0
Viruses				
Influenza A or B	9,1	16,6	10,6	26 (17), 7 (5
RSV	6	11	8	20 (13)
Parainfluenza 1–3	6	12	10	20 (13)
Adenovirus	2	9	5	11 (7)
Rhinovirus	1	2	2	5 (3)
Enteroviruses	0	1	0	1 (<1)

US study

* The categories of coinfection with bacteria and with viruses are not mutually exclusive.

Our inability to attribute all episodes of LRIs in children to known pathogens likely resulted from a combination of clinical and technical limitations such as administration of antibiotic therapy before acquisition of fluid samples, absence of specific tests for *Moraxella catarrhalis*¹⁹ and *Haemophilus influenzae*,²⁰ absence of convalescent serology in 21% of patients, and inability to identify novel pathogens such as metapneumovirus

Epidemiology and Clinical Characteristics of Community-Acquired Pneumonia in Hospitalized Children

Ian C. Michelow, MBBCh, DTM&H*; Kurt Olsen, BS*; Juanita Lozano, MD*; Nancy K. Rollins, MD‡; Lynn B. Duffy, MT (ASCP)§; Thedi Ziegler, PhD||; Jaana Kauppila, MD¶; Maija Leinonen, PhD#; and George H. McCracken, Jr, MD*

Pediatrics 2004 113: 701-7

Does non-typable *H. influenzae* play a significant role in pediatric lower respiratory tract infections?

The role of NTHi in childhood pneumonia remains unclear, although indirect evidence, including its high prevalence in nasopharyngeal colonization studies [37,38], its demonstrated pathogenic potential in AOM [8,11], another mucosal infection, as well as preliminary evidence of involvement in bronchitis [39] suggests some role in lower respiratory disease in children. (Hausdorff & Dagan, Vaccine 2008)

Reference % NTHi Country Cases Le Bourgeois, Chest, 2002 **Recurrent Wheezing** France 50% US Saito, Ped Pulm, 2006 **Recurrent Wheezing** 26% Romero, ERS, 2009 Persistent bacterial bronchitis Spain 28% Refractory or recurrent bronchopneumonia Belgium De Schutter, CID 2011 43% Persistent radiological abnormalities or wheezing UK Marguet, Am J Resp, 1999 Chronic cough 43% Davidson, ERS, 2010 Persistent respiratory symptoms 30% Hare, J Ped, 2010 **Bronchiectasis** Australia 47% Mammas, ERS, 2010 Prolonged purulent bronchitis Greece 61%

Bronchoalveolar lavage isolation of NTHi in non-CF children with LRTIs

NTHi from Children with Pneumonia: Asian Data

Serotypes of *H influenzae* isolated from children with pneumonia in developing countries

	Children	H influenza	e			
		Total	Type b	a, c, d, e, f	Non-typable	
Lung aspiration*						
Papua New Guinea ²	83	34†	7 (21%)	9 (26%)	18 (53%)	
Gambia⁴	51	9	3 (33%)†	2 (22%)	4 (44%)	
Gambia⁵	94	8	5 (63%)†	1 (13%)	2 (25%)	
Total (average %)	228	51	39%	20%	41%	
Blood culture						
Pakistan ⁶	1106	95†	61 (64%)	0	3 <u>4 (36</u> %)	
Philippines ⁷	?	40	23 (58%)	3 (8%)	14 (35%)	
Papua New Guinea [®]	1024	92	57 (62%)	14 (15%)	21 (23%)	
Pakistanº	595	81†	6 (7%)	13 (16%)	62 (76%)	
Total "(average %)		308	48%	10%	43%	
*Excluding isolates from blood †Some <i>H influenzae</i> isolates w						

"There is an urgent need in developing countries for vaccines against all strains of *H influenzae, serotypeable and non-serotypeable.* »

Shann F. THE LANCET • Vol 354 • October 30, 1999

Conclusions

- Recent global estimates place pneumococcal pneumonia as a top cause of childhood morbidity and mortality
- Pneumococcal conjugate vaccines have proven highly effective in preventing pneumonia, even some thought to be caused by viruses
 - Nonetheless, there is room for improvement
- Other pathogens likely also important causes of pediatric lower respiratory tract infections