

Disclosure

Director for Clinical R & D & Medical Affairs, GSK Philippines

The Organism

Commensal

- Colonizes nares, axillae, vagina, pharynx, and/or damaged skin surfaces
- Infection occur w/breach of skin or mucosal barriers
- Major cause of invasive infections
- Major cause of healthcare associated (HA) and community associated (CA) Infections

Boucher et al CID 2010:51 (Suppl2) pp 183-197 Welsh et al J of Clin Micro Mar 2010 pp894-899

The Organism

- Emergence of drug-resistant strains in 1960s, MRSA
 - Therapeutic challenge
- Account for >50% of all strains causing clinical disease
- MRSA is etiologic agent for common skin infections to more serious manifestations
- Molecular Diagnostic Techniques
 - Rapid identification
- Newer antimicrobials not established as safe and effective in children
- Limited pharmacokinetic data

Boucher et al CID 2010:51 (Suppl2) pp 183-197 Long et al Expert Rev Anti-infective Ther 2012:8(2); 183-185

Antibiotic Resistance to S. aureus

- Decade after introduction of Pen in 1950s, antibiotic resistance present in hospitals in US
- First case reported in UK after introduction of semi synthetic penicillins
- In US, 7 years later case of MRSA documented
- Mid 1980s, MRSA seen in large urban medical centers
 - Prevalence rate 5 10%
 - Smaller community hospitals, 20%
 - Larger urban centers, 40%

Incidence of MRSA Infections

- EU MRSA affects >150,000 patients annually
- Pan-European Surveillance data on bloodstream infections
 - Marked variability among EU member states on proportion of *S. aureus* that is MRSA
 - <1% >50%
- Initially nosocomial pathogen limited to healthcare facilities
- Emerged as major community associated organism
- Initial cases of MRSA in non-hospitalized adults associated with:
 - Drug abuse
 - Previous antimicrobial therapy
 - Prior hospitalization

Long et al Expert Rev Anti-infective Ther 2012:8(2); 183-185 Koch et al Euro Surveil 2010;15 (41); Oct 2010 Boucher et al CID 2010:51 (Suppl2) pp 183-197

Incidence of MRSA

1990s, CA-MRSA no identified risk factors in children

Retrospective Study demonstrated

- Prevalence of CA-MRSA w/o identified factors increased from 10 per 100,000/admission in 1988 -1990 to 259/100,000 in 1993 – 1995 urban hospital
- Rapid development of resistance
- Resistance to Pen noted a year after introduction
- 1950s 75% of strains in large hospitals Pen resistant

NEJM 1955;253: 909-22 Herold et al JAMA 1998; 279:593-8

Incidence of MRSA

- Currently, MRSA accounts for 60% of clinical S. aureus from ICU
- Retrospective study by Aragon et al Jan 2007-Dec 2008
 - Reviewed 219 records
 - # 40.64% had MSSA
 - 15.07% had CA MRSA
 - 44.3% had HA MRSA
 - Prevalence of CA MRSA is 7 per 1000 admissions

Mortality of MRSA and MSSA

MRSA SURVEILLANCE RATES 2003-2007: ANTIMICROBIAL RESISTANCE SURVEILLANCE PROGRAM (ARSP)

Carlos C, ARSP

PCMC Data: Selected Years

Manahan-Soriano C, Samulde-Ressurreccion, Santos J, MD, MRSA in Children, 2003

Percentage of MRSA over total *S. aureus* isolates at PCMC from 2004-2008

What are MRSA'S?

- oxacillin MIC ≥ 4 mcg/mL*
- MIC's of 4 to 8 mcg/mL : borderline or low level resistance
- resistant to all beta-lactams, including cephalosporins
- mediated by mecA gene, found in all resistant strains, which codes for PBP2a**
- mecA is part of mobile Staphylococcal cassette chromosome or SCCmec (5 types)***

^{*}Clinical and Laboratory Standards Institute 2006

^{**}Inglis et al, J Gen Microbiol 1988 ; Tesch et al, Antimicrob Agents Chemother 1988

^{***}Oliveira et al, Microb Drug Resist 2001 ; Ito et al, Antimicrob Agents Chemother 2004

Classification of MRSA

HA-MRSA*

- -presence of an invasive device at the time of admission
- -history of MRSA infection or colonization

-history of surgery, hospitalization, dialysis, or residence in a long-term care facility in the 12 months preceding culture

CA-MRSA**

onset in the community in a patient who is without risk factors for HA-MRSA

*Klevens et al, JAMA 2007; Fridkin et al, N Engl J Med 2005 ** Fridkin et al, N Engl J Med 2005; Gorwitz RJ, Pediatr Infect Dis J. 2008

Microbiological Differences

HA-MRSA

- mostly associated with SCCmec types I, II, and III
- multidrug resistant (usu. to 3 or more agents)*

CA-MRSA

- associated with SCCmec type IV and, sometimes, type V
- often not multidrug resistant to non-beta lactam agents e.g. clindamycin, fluoroquinolones, tetracyclines, mupirocin*
- many are PVL + : increased morbidity in children with osteomyelitis and mortality in in *S. aureus* pneumonia**
- resistance increasing

*Naimi et al, JAMA 2003; Deserinski, Clin Infect Dic 2005; Ma et al, Antimicrob Agents Chemother 2002; ** Baba, Lancet 2002; Diep et al, J Infect Dis 2006; Diep et al, Lancet 2006; ** Gillet et al, Lancet 2002; Martinez-Aguilar et al, Pediatr Infect Dis J 2004; Bocchini et al, Pediatrics 2006; ***Han et al, J Clin Microbiol. 2007; Styers et al, Ann Clin Microbiol Antimicrob. 2006

Clinical Presentation

MRSA (Methicillin resistant Staphylococcus aureus)

Clinical Presentation

Mandell, Atlas of Infectious Diseases; cases from Phil. Children's Medical Center

Management of MRSA

- Mainstay of treatment
- Vancomycin is 1st line therapy
- Efficacy in children limited
- IDSA has issued 1st Clinical Practice Guidelines for treatment of MRSA in adults and children
 - Synthesize current information
 - Address the management of a variety of clinical syndromes

What is the management of skin and soft-tissue infections (SSTIs) in the era of community-associated MRSA (CA-MRSA)

- Cutaneous abscess
 - Incision and drainage
- Antibiotic therapy
 - Recommended for the following
 - Severe or extensive disease
 - Rapid progression in presence of associated cellulitis
 - Signs and symptoms of systemic illness
 - Associated comorbidities or immunosuppresion
 - Extremes of age
 - Abscess in an area difficult to drain

- Antibiotic therapy
 - Recommended for the following
 - Associated septic phlebitis
 - Lack of response to I & D alone
- Purulent cellulitis
 - Empirical therapy for CA-MRSA pending culture results
 - Empirical therapy for β hemolytic strep not necessary
 - 5 10 days therapy recommended
- Non-purulent cellulitis
 - Empirical therapy for β hemolytic strep recommended
 - Empirical coverage for CA-MRSA recommended if no response to β – lactam therapy

- Non-purulent cellulitis
 - Empirical therapy for β hemolytic strep recommended
 - Empirical coverage for CA-MRSA recommended if no response to β – lactam therapy
 - 5 10 days therapy recommended
- Empirical coverage of CA-MRSA with SSTI
 - Oral antibiotic options
 - Clindamycin
 - TMP-SMX
 - Tetracycline
 - Linezolid

- Empirical coverage of CA-MRSA
 - If β hemolytic strep and CA-MRSA desired:
 - Clindamycin alone
 - TMP-SMX
 - Tetracycline + β lactam
 - Linezolid alone
- Use of rifampin as a single agent or as adjunctive therapy for the treatment of SSTI is not recommended

- Hospitalized patients with complicated SSTI
 - Surgical debridement and broad-spectrum antibiotics
 - Empirical therapy for MRSA considered pending culture data
 - Options include the following:
 - Intravenous (IV) vancomycin
 - Oral (PO) or IV linezolid twice daily
 - Daptomycin 4 mg/kg/dose IV once daily
 - Telavancin 10 mg/kg/dose IV once daily
 - Clindamycin 600 mg IV or PO 3 times a day
 - β-lactam antibiotic (eg, cefazolin) may be considered in hospitalized patients with nonpurulent cellulitis with modification to MRSA-active therapy if there is no clinical response
 - Seven to 14 days of therapy is recommended but should be individualized on the basis of the patient's clinical response

Cultures are recommended in the following:

- Antibiotic therapy
- Severe local infection
- Signs of systemic illness
- Not responded adequately to initial treatment
- Concern for a cluster or outbreak
- Pediatric considerations
 - Children with minor skin infections
 - Mupirocin 2% topical ointment can be used
 - Tetracyclines not used in children < 8 years</p>

Pediatric considerations

- Hospitalized children with cSSTI
 - Vancomycin recommended
 - Empirical therapy with clindamycin 10–13 mg/kg/dose IV every 6–8 h is an option if the clindamycin resistance rate is low
 - Linezolid 600 mg PO/IV twice daily for children ≥12 years of age and 10 mg/kg/dose PO/IV every 8 h for children <12 years of age is an alternative

What is the management of recurrent MRSA SSTIs

- Preventive education messages on personal hygiene
- Appropriate wound care
- Environmental hygiene measures
- Decolonization considered in selected cases if:
 - Develops a recurrent SSTI despite optimizing wound care and hygiene measures
 - Ongoing transmission in household
- Decolonization strategies offered
 - Nasal decolonization with mupirocin twice daily for 5–10 days

- Oral antimicrobial therapy recommended for the treatment of active infection
- An oral agent in combination with rifampin, if the strain is susceptible
- In cases where household or interpersonal transmission is suspected:
 - Personal and environmental hygiene measures
 - Contacts should be evaluated for evidence of S. aureus infection:
 - Symptomatic contacts should be evaluated and treated
 - Nasal and topical body decolonization strategies considered
 - Nasal and topical body decolonization of asymptomatic household contacts

- Role of cultures in the management of recurrent SSTI is limited:
 - Screening cultures prior to decolonization not routinely recommended
 - Surveillance cultures following a decolonization are not routinely recommended in absence of active infection

What is the management of MRSA bacteremia and infective endocarditis

Bacteremia and Infective Endocarditis, Native Valve

- Addition of gentamicin to vancomycin not recommended
- Addition of rifampin to vancomycin not recommended
- Clinical assessment to identify source and extent of infection with elimination and/or debridement of other sites of infection should be conducted
- Additional blood cultures 2–4 days after initial positive cultures

- Bacteremia and Infective Endocarditis, Native Valve
 - Evaluation for valve replacement surgery is recommended
 - Large vegetation
 - Occurrence of ≥1 embolic event during the first 2 wks of therapy
 - Severe valvular insufficiency
 - Valvular perforation or dehiscence
 - Decompensated heart failure
 - Perivalvular or myocardial abscess
 - New heart block
 - Persistent fevers or bacteremia

- Infective Endocarditis, Prosthetic Valve
 - Vancomycin + Rifampin every 8 h for at least 6 weeks + Gentamicin every 8 h for 2 weeks
 - Early evaluation for valve replacement surgery
- Pediatric consideration
 - In children, Vancomycin every 6 h is recommended for the treatment of bacteremia and infective endocarditis
 - Duration of therapy 2 to 6 weeks
 - Depending on source, presence of endovascular infection, and metastatic foci of infection
 - Daptomycin 6–10 mg/kg/dose IV once daily may be an option
 - Clindamycin or Linezolid should not be used if there is concern for infective endocarditis or endovascular source of infection
 - May be considered in children whose bacteremia rapidly clears and not related to an endovascular focus

Pediatric consideration

- Data insufficient to support routine use of combination in children with bacteremia or infective endocarditis; decision to use combination individualized.
- Echocardiogram is recommended in children
 - Congenital heart disease
 - Bacteremia more than 2–3 days in duration
 - Other clinical findings suggestive of endocarditis

What is the management of MRSA pneumonia?

- Hospitalized patients with severe community-acquired pneumonia
 - Therapy for MRSA is recommended pending culture results
- Health care–associated MRSA (HA-MRSA) or CA-MRSA pneumonia
 - IV vancomycin
 - Linezolid
 - Clindamycin
 - If susceptible, recommeded 7–21 days
- MRSA pneumonia complicated
 - Antimicrobial therapy against MRSA used in conjunction with drainage procedures

Pediatric considerations

- IV vancomycin is recommended
- If the patient is stable, Clindamycin 10–13 mg/kg/dose IV every 6–8 h used as empirical therapy
- Clindamycin resistance low
- Oral therapy
 - Linezolid 600 mg PO/IV twice daily for children ≥12 years
 - 10 mg/kg/dose every 8 h for children <12 years of age is alternative</p>

What is the management of MRSA bone and joint infections?

Osteomyelitis

- Surgical debridement and drainage mainstay of therapy
- Optimal route of administration antibiotic therapy not established
- Parenteral therapy followed by oral therapy
 - Patient circumstances

Osteomyelitis

- Antibiotics for parenteral administration
 - Vancomycin
 - Daptomycin 6 mg/kg/dose IV once daily
 - Antibiotic options
 - TMP-SMX 4 mg/kg/dose twice daily combination with Rifampin 600 mg once daily
 - Linezolid 600 mg twice daily
 - Clindamycin 600 mg every 8 h

Osteomyelitis

- Some experts recommend the addition of rifampin
- For patients with concurrent bacteremia, rifampin should be added after clearance of bacteremia.
- Optimal duration of therapy unknown
- Minimum 8-week course is recommended
- Some experts suggest an additional 1–3 months if debridement is not performed of oral rifampin-based combination therapy with TMP-SMX
- Magnetic resonance imaging (MRI)
- Erythrocyte sedimentation rate (ESR) and/or C-reactive protein (CRP) level may be helpful to guide response to therapy

Septic Arthritis

- Drainage or debridement of the joint space
- Antibiotic choices for osteomyelitis
- # 3–4-week course of therapy is suggested
- Device-related osteoarticular infections

- Early-onset (<2 months after surgery) or acute hematogenous prosthetic joint infections involving a stable implant with short duration (≤3 weeks) of symptoms and debridement, initiate parenteral therapy plus rifampin for 2 weeks followed by rifampin plus a fluoroquinolone, TMP-SMX, a tetracycline or clindamycin for 3 or 6 months for hips and knees, respectively
- Prompt debridement with device removal whenever feasible is recommended

- For early-onset spinal implant infections, initial parenteral therapy plus rifampin followed by prolonged oral therapy is recommended
- Long-term oral suppressive antibiotics if adequate surgical debridement is not possible should be given in conjunction with rifampin

Pediatric considerations

- For children with acute hematogenous MRSA osteomyelitis and septic arthritis, IV vancomycin recommended
 - 3–4-week course for septic arthritis
 - 4–6-week course for osteomyelitis
- Alternatives to vancomycin and clindamycin
 - daptomycin 6 mg/kg/day IV once daily
 - Inezolid 600 mg PO/IV twice daily for children ≥12 years of age
 - 10 mg/kg/dose every 8 h for children <12 years of age</p>

What is the management of MRSA infections of the CNS?

Meningitis

- IV vancomycin
- For CNS shunt infection, shunt removal is recommended, and it should not be replaced until cerebrospinal fluid (CSF) cultures are repeatedly negative

Brain abscess, subdural empyema, spinal epidural abscess

- Neurosurgical evaluation for incision and drainage is recommended
- IV vancomycin for 4–6 weeks.
- Alternatives include the following:
 - Linezolid twice daily
 - TMP-SMX every 8–12 h

- Septic Thrombosis of Cavernous or Dural Venous Sinus
- Surgical evaluation for incision and drainage is recommended
- IV vancomycin for 4–6 weeks.
- Alternatives include the following:
 - Linezolid twice daily
 - TMP-SMX every 8–12 h

What is the role of adjunctive therapies for the treatment of MRSA infections?

Not routinely recommended

What are the recommendations for vancomycin dosing and monitoring?

- Data are limited to guide vancomycin dosing in children. IV vancomycin 15 mg/kg/dose every 6 h is recommended in children with serious or invasive disease
- Trough concentrations considered in those with serious infections, such as bacteremia, infective endocarditis, osteomyelitis, meningitis, pneumonia, and severe SSTI (ie, necrotizing fasciitis)

How should results of vancomycin susceptibility testing be used to guide therapy?

- For susceptible isolates, the patient's clinical response should determine the continued use of vancomycin, independent of the MIC
- If patient with clinical and microbiologic response to vancomycin, then it may be continued with close follow-up
- If patient with no clinical or microbiologic response to vancomycin despite adequate debridement and removal of other foci of infection, an alternative to vancomycin is recommended regardless of MIC
- For isolates resistant to vancomycin, an alternative to vancomycin should be used

What is the management of MRSA infections in neonates?

Neonatal pustulosis

- For mild cases with localized disease, topical treatment with mupirocin may be adequate in full-term neonates and young infants
- For localized disease in a premature or very lowbirthweight infant or more-extensive disease involving multiple sites in full-term infants, IV vancomycin or clindamycin is recommended, at least initially, until bacteremia is excluded

Neonatal MRSA sepsis

- IV vancomycin is recommended
- Clindamycin and linezolid are alternatives for nonendovascular infections

"DIP YOU HAFTA ASK HERTO DEMONSTRATE HOW SHE GOT HER BLACK BELT?"

We the physicians are the soul of preservation

We are a great source of strength We can weather the storm and face up to the challenge without compromise

