Old Drugs....
New Bugs

Jaime A. Santos
Outline

• Old bugs in new guises: Multidrug resistant bacteria
• The increasing problem of resistance and dwindling new antibiotic choices
• The revival of old drugs for drug-resistant Gram-negative and Gram-positive bacteria
Introduction

• Infections from resistant bacteria are now too common, and some pathogens have even become resistant to multiple types or classes of antibiotics

• World health leaders have described antibiotic-resistant microorganisms as “nightmare bacteria” that pose a catastrophic threat to people in every country in the world.
• In the United States, more than two million people are sickened every year with antibiotic-resistant infections, with at least 23,000 dying as a result.

• Regarding level of concern, CDC has for the first time prioritized bacteria into one of three categories: **urgent** (*C. difficile*, carbapenem-resistant Enterobacteriaceae, drug-resistant GC), **serious** (ESBL’s, MRSA, MDR *P. aeruginosa*, MDR and XDR TB, etc), and **concerning** (VRE, etc).

CDC: Antibiotic Resistance Threats in the US, 2013
Acronym Definitions

• Multidrug-resistant MDR
 – resistance of an organism to at least 1 or more agents in 3 or more classes of antimicrobial categories

• Extensively drug-resistant XDR
 – resistance to at least 1 agent in all but 2 or fewer antimicrobial categories

• Pandrug-resistant PDR
 – resistance to all available antibiotics

ARSP 2014
How Antibiotic Resistance Happens

1. Lots of germs. A few are drug resistant.
2. Antibiotics kill bacteria causing the illness, as well as good bacteria protecting the body from infection.
3. The drug-resistant bacteria are now allowed to grow and take over.
4. Some bacteria give their drug-resistance to other bacteria, causing more problems.
Antibiotic Resistance – A Global Problem

Emergence → Spread

Source: CDDEP 2015, WHO 2014 and PAHO,
Percentage of carbapenem-resistant *Klebsiella pneumoniae*, by country (2011–2014)

Source: CDDEP 2015, WHO 2014 and PAHO, forthcoming
Spread of New Delhi metallo-beta-lactamase-1: first detection

Source: Johnson and Woodford 2013 (adapted)
Most Commonly Isolated Multidrug Resistant Organisms

<table>
<thead>
<tr>
<th>CDC</th>
<th>DOH-ARSP 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Methicillin-Resistant S. aureus (MRSA)</td>
<td>1. Methicillin-Resistant S. aureus (MRSA)</td>
</tr>
<tr>
<td>2. Vancomycin Resistant Enterococci (VRE)</td>
<td>2. Extended Spectrum Beta-Lactamase producing Enterobacteriaceae (ESBLs)</td>
</tr>
<tr>
<td>3. Extended Spectrum Beta-Lactamase producing Enterobacteriaceae (ESBLs)</td>
<td>3. Acinetobacter baumanii</td>
</tr>
</tbody>
</table>
ARSP 2014 Data

• Multidrug-resistant
 – *P. aeruginosa* – 23%
 – *A. baumannii* – 61%

• Extensively drug-resistant
 – *P. aeruginosa* - 18%
 – *A. baumannii* - 46%
DRUGS VS. BUGS
Antibiotic Development is Dwindling

- Between 1983 and 1987, there were 16 New Antibacterial Agents
- Between 1988 and 1992, there were 14
- Between 1993 and 1997, there were 10
- Between 1998 and 2002, there were 7
- Between 2003 and 2007, there were 5
- Between 2008 and 2012, there were 2

Why We Must Act Now

• The way we use antibiotics today in one patient directly impacts how effective they will be tomorrow in another patient; they are a shared resource.

• Since it will be many years before new antibiotics are available to treat some resistant infections, we need to improve the use of antibiotics that are currently available.

• In an era of increasing emergence of drug resistance and lack of new antibiotics there is a growing need to optimize the use of old and new antibiotics to treat infections.

CDC Get Smart Program
• In recent years, some older antibiotics that had been largely phased out have been returned to use to treat multidrug-resistant infections, particularly highly resistant Gram-negative infections, for which there are few alternatives.
<table>
<thead>
<tr>
<th>Antibiotic class</th>
<th>Year introduced</th>
<th>Target or activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfa drugs/sulfonamides (synthetic)</td>
<td>1936</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>β-lactams (penicillins, cephalosporins, carbapenems, monobactams)</td>
<td>1938</td>
<td>Broad-spectrum</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>1946</td>
<td>Broad-spectrum</td>
</tr>
<tr>
<td>Chloramphenics</td>
<td>1948</td>
<td>Broad-spectrum</td>
</tr>
<tr>
<td>Macrolides</td>
<td>1951</td>
<td>Broad-spectrum</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>1952</td>
<td>Broad-spectrum</td>
</tr>
<tr>
<td>Lincosamides</td>
<td>1952</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>Rifamycins (ansamycins)</td>
<td>1958</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>Glycopeptides</td>
<td>1958</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>Quinolones (synthetic)</td>
<td>1968</td>
<td>Broad-spectrum</td>
</tr>
<tr>
<td>Streptogramins</td>
<td>1998</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>Oxazolidinones (synthetic)</td>
<td>2000</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>Lipopeptides</td>
<td>2003</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>Fidaxomicin</td>
<td>2011</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>Diarylquinolines</td>
<td>2013</td>
<td>Narrow-spectrum</td>
</tr>
<tr>
<td>Teixobactin</td>
<td>-</td>
<td>Gram-positive</td>
</tr>
</tbody>
</table>

Source: Adapted from Lewis, 2013
Infections caused by multidrug-resistant Gram-negative bacteria successfully treated with old antibiotics.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Pathogens</th>
<th>Sites of infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colistin (IV)</td>
<td>MDR A. baumannii</td>
<td>Ventilator associated pneumonia</td>
</tr>
<tr>
<td></td>
<td>MDR P. aeruginosa</td>
<td>HA-pneumonia</td>
</tr>
<tr>
<td></td>
<td>MDR K. pneumoniae</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td></td>
<td>MDR S. maltophilia</td>
<td>Intraabdominal infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone and Joint Infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacteremia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wound infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meningitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prosthetic joint infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetic foot infection</td>
</tr>
</tbody>
</table>

Cassir et al, A new strategy to fight antimicrobial resistance, doi: 10.3389/fmicb.2014.00551
Infections caused by multidrug-resistant Gram-negative bacteria successfully treated with old antibiotics.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Pathogens</th>
<th>Sites of infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfomycin (IV)</td>
<td>ESBL E. coli ESBL K. pneumoniae/ Enterobacter sp./ Serratia sp. MDR P. aeruginosa OXA-48 K. pneumonia and E. coli KPC K. pneumonia Carbapenem-resistant P. aeruginosa MDR S. enterica serotype Typhimurium</td>
<td>Ventilator associated pneumonia HA-pneumonia Urinary tract infection Intraabdominal infection Bone and joint infections Bacteremia Wound infection Meningitis Brain abscess Lung abscess Cystic fibrosis (pulmonary exacerbation)</td>
</tr>
<tr>
<td>Fosfomycin (PO)</td>
<td>ESBL E. coli and K. pneumoniae KPC K. pneumoniae MDR P. aeruginosa</td>
<td>Lower UTI</td>
</tr>
</tbody>
</table>

Cassir et al, A new strategy to fight antimicrobial resistance, doi: 10.3389/fmicb.2014.00551
Infections caused by multidrug-resistant Gram-negative bacteria successfully treated with old antibiotics.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Pathogens</th>
<th>Sites of infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivmecillinam</td>
<td>ESBL E. coli and K. pneumonia</td>
<td>Lower UTI</td>
</tr>
<tr>
<td>Mecillinam (PO)</td>
<td>CTX-M/ESBL E. coli and ESBL Enterobacteriaceae</td>
<td>Relapsing pyelonephritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complicated UTI</td>
</tr>
<tr>
<td>Temocillin (IV)</td>
<td>dAmpC/ESBL Enterobacteriaceae, ESBL E. coli and K. pneumonia MDR P. agglomerans</td>
<td>HA pneumonia, Urinary tract infection, Bacteremia, Severe sepsis (VAP, UTI, IAI), Epidural abscess, Subacute synovitis</td>
</tr>
<tr>
<td>Nitrofurantoin (PO)</td>
<td>ESBL E. coli</td>
<td>Lower UTI</td>
</tr>
</tbody>
</table>

Cassir et al., A new strategy to fight antimicrobial resistance, doi: 10.3389/fmicb.2014.00551
Colistin – a polymyxin

- Synthesized by *Paenibacillus polymyxa* subspecies *colistinus*
- Discovered 1949 and introduced in 1950’s
- Concentration-dependent bactericidal effect; bind to LPS in outer cell membrane of Gm (-)’s
- In humans, mainly used topically due to severe neuro- and nephrotoxicity - until recently, where it was re-introduced as last-resort drug for multi-drug resistance (MDR)

Komura and Kurahashi, 1979; Yahav, Colistin: New lessons on an old antibiotic, Clinical Microbiology and Infection, Volume 18 Number 1, January 2012
Colistin

- Recommended by the most recent American Thoracic Society Guidelines as a therapeutic option for the treatment of ventilator-associated pneumonia (VAP) caused by MDR Gram-negative organisms
- Evaluated for the treatment of serious MDR *P. aeruginosa, Acinetobacter baumannii* and Enterobacteriaceae infections of various types, including pneumonia, bacteremia, abdominal infections, bone and joint infections (BJIs), urinary tract infections (UTIs), and meningitis
A New Threat

• Up to recently, resistance to colistin has been chromosomally mediated
• New plasmid-mediated colistin resistance (MCR-1) in *E. coli* reported in China

Liu et al, Lancet Infectious Diseases, vol 16, no 2, Feb 2016
Fosfomycin

- an antimetabolite inhibitor that prevents the formation of N-acetylmuramic acid, a precursor of peptidoglycan in the bacterial wall
- first identified in Spain in 1969 in the fermentation broths of several strains of *Streptomyces* sp. (Raz, 2012)
- broad spectrum of activity with a rapid bactericidal effect against several Gram-negative and Gram-positive aerobic bacteria
- Generally well tolerated, with minimal toxicity (excepting thrombophlebitis when administered via peripheral venous catheter).
Pivmecillinam

• Prodrug of mecillinam, a β-lactam with high specificity against penicillin-binding protein 2 (PBP-2) in the Gram-negative cell wall; introduced in the 1970s
• Highly active against Enterobacteriaceae and resistant to β-lactamases.
• Lack of activity against Gram-positive organisms and *P. aeruginosa*
• Use of pivmecillinam as first-line treatment for uncomplicated UTIs is recommended by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases
Temocillin

- Developed and first marketed in the UK in the 1980s
- 6-α-methoxy derivative of ticarcillin, characterized by its resistance to most beta-lactamases with an extended spectrum and some carbapenemases
- abandoned because of lack of activity against Gram-positive organisms, anaerobes and *Pseudomonas aeruginosa*
- Mainly excreted renally and therefore requires dosage adjustment in patients with renal impairment
- Appropriate for use in microbiologically directed therapy, particularly for the UTIs caused by confirmed ESBL producers
Nitrofurantoin

- synthetic antimicrobial derived from furan by the addition of a nitro group and a side chain containing hydantoin
- Introduced into clinical practice in its microcrystalline form in 1952
- Macrocrystalline form has less gastrointestinal side effects
- Broad-spectrum activity against the main uropathogens (i.e., Escherichia coli, Citrobacter species, group-B streptococci, enterococci, Staphylococcus aureus, S. epidermidis, Klebsiella pneumoniae, and Enterobacter sp.)
- Active against ESBL-producing Enterobacteriaceae and vancomycin-resistant enterococci.
- Currently, NFT is recommended as a first-line treatment for uncomplicated UTIs by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases
Infections caused by multidrug-resistant Gram-positive bacteria successfully treated with old antibiotics.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Pathogens</th>
<th>Sites of infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>CA and HA-MRSA</td>
<td>Skin and soft tissue infectionsBone and joint infectionsOsteomyelitisInfectedive endocarditis (prosthetic valve)MeningitisBacteremiaCOPD exacerbation</td>
</tr>
<tr>
<td>(TMP/SMX) (IV, PO)</td>
<td>E. americana</td>
<td></td>
</tr>
<tr>
<td>Minocycline (IV, PO)</td>
<td>MRSA</td>
<td>Skin and soft tissue infectionsBone and joint infectionsOsteomyelitisInfectedive endocarditis (prosthetic valve)Bacteremia</td>
</tr>
<tr>
<td>Doxycycline (IV, PO)</td>
<td>MRSA</td>
<td>Skin and soft tissue infectionsUTIBacteremia</td>
</tr>
<tr>
<td></td>
<td>VREf</td>
<td></td>
</tr>
</tbody>
</table>

Infections caused by multidrug-resistant Gram-positive bacteria successfully treated with old antibiotics.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Pathogens</th>
<th>Sites of infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramphenicol (IV)</td>
<td>VRE</td>
<td>Meningitis, Ventriculitis, Bacteremia, Intraabdominal infections, Infective endocarditis (prosthetic valve)</td>
</tr>
<tr>
<td></td>
<td>VREf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stenotrophomonas maltophilia</td>
<td></td>
</tr>
<tr>
<td>Clindamycin (IV, PO)</td>
<td>MRSA</td>
<td>Skin and soft tissue infections, Bone and joint infections, Mandible osteomyelitis, Necrotizing fasciitis, Necrotizing pneumonia, Bacteremia</td>
</tr>
<tr>
<td></td>
<td>MRSA(PVL+)</td>
<td></td>
</tr>
<tr>
<td>Pristinamycin (PO)</td>
<td>MRSA</td>
<td>Pneumonia, Skin and soft tissue infections, Urinary tract infections, Bone and joint infections, Epidural abscess</td>
</tr>
<tr>
<td></td>
<td>VRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CoNS</td>
<td></td>
</tr>
</tbody>
</table>

Cassir et al, A new strategy to fight antimicrobial resistance, doi: 10.3389/fmicb.2014.00551
Infections caused by multidrug-resistant Gram-positive bacteria successfully treated with old antibiotics.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Pathogens</th>
<th>Sites of infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusidic acid (PO)</td>
<td>MRSA</td>
<td>Bone and joint infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prosthetic joint infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic osteomyelitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidural abscess</td>
</tr>
</tbody>
</table>

Cassir et al, A new strategy to fight antimicrobial resistance, doi: 10.3389/fmicb.2014.00551
TRIMETHOPRIM-SULFAMETHOXAZOLE

• broad-spectrum bactericidal agent introduced clinically in the early 1970s
• Trimethoprim is a tetrahydrofolate reductase inhibitor that, when added to sulfamethoxazole, provides a second-step block in the folate biosynthetic pathway
• According to its good oral bioavailability, high-dosage regimen of TMP/SMX represents a suitable alternative for methicillin-resistant S. aureus (MRSA) infections
TRIMETHOPRIM-SULFAMETHOXAZOLE

• In a recent study with a cohort of 328 patients with infections due to MRSA with a MIC to vancomycin of 2μg/mL, TMP/SMX alone compared favorably to linezolid and daptomycin in terms of treatment efficacy, mortality, and reduced antibiotic costs (Campbell et al., 2012)

• TMP/SMX alone has been shown to be less effective than current treatment for MRSA endocarditis in combination with other antibiotics (Fujino et al., 2009; Casalta et al., 2013; Di Carlo et al., 2013)
Minocycline

- is an “old drug” that was first introduced in the 1960s.
- It is available both intravenously and orally with United States Food and Drug Administration approval for the treatment of infections caused by *A. baumannii*
Tigecycline – a glycylcycline

Glycylcyclines are ‘3rd generation’ tetracyclines
• Less affected by bacterial resistance mechanisms
• Broad-spectrum, lower MICs

Only tigecycline is in clinical use (2006) – complicated skin and soft tissue infections in humans
• More toxic, higher mortality and more adverse effects than comparators
• Recommended only when other treatment options are not available
Chloramphenicol

- produced by *Streptomyces venezuelae*, inhibits protein synthesis by binding reversibly to the 50S subunit of the bacterial ribosome
- Has good oral bioavailability and excellent tissue penetration
- Broad-spectrum: Gram-positive and Gram-negative bacteria, anaerobes, spirochetes, rickettsiae, chlamydiae, and mycoplasma
- Released in the United States in 1949, reports linked this drug to rare but potentially lethal hematological side effects that restricted its use as last resort therapy
- Found to be effective against vancomycin-resistant *Enterococcus faecium* (VREf), with bacteriostatic activity (Norris et al, 1995; Zhanel et al 2003)
Clindamycin

• produced by chemical modification of lincomycyn, which was isolated in 1962 from *Streptomyces lincolnensis* (McGehee et al., 1968)
• binds to 50S ribosomal subunit
• Concern about *C. difficile* colitis has limited the use of clindamycin, but remains an important antibiotic in the treatment of severe anaerobic infections.
• main advantage is its potential anti-exotoxin activity in necrotizing Panton-Valentin leucocidin (PVL)-positive CA-MRSA-complicated pneumonia or SSTIs, and it is usually used with another anti-MRSA antibiotic (Hidron et al., 2009).
• recommended by clinical practice guidelines as monotherapy for CA-MRSA SSTIs (Stevens et al., 2014).
Pristinamycin

• Derived from *Streptomyces pristinae spiralis*

• An oral streptogramin antibiotic made up of two synergistic but structurally unrelated components, pristinamycin IA and pristinamycin IIA

• Discovered over 50 years ago

• A well-tolerated and effective alternative for the treatment of bone and joint infections due to Gram-positive bacteria including MRSA and VRE
Rifampicin

• A semisynthetic compound derived from *Streptomyces mediterranei*
• Introduced in 1967 as major part of the anti-tuberculous treatment
• Has an excellent tissue penetration and a unique activity on bacteria in biofilms growing on the surface of prosthetic devices.
• Despite the excellent bactericidal activity and oral bioavailability, the rapid emergence of resistance in bacteria constitutes a major limitation and therefore should be used in combination with other antimicrobial agents

A new strategy to fight antimicrobial resistance:
Rifampicin

• Despite the lack of a control group and the limited number of patients, colistin and rifampicin appeared to be an effective and safe combination therapy for severe infections caused by MDR *Acinetobacter baumanii* (Motaouakkile et al., 2006; Bassetti et al., 2008) or MDR *Pseudomonas aeruginosa*.

• Rifampicin with fusidic acid or rifampicin with fluoroquinolones treatment has been shown to be effective, in combination with surgical debridement, on early prosthesis joint infections (PJI) caused by MRSA (Aboltins et al., 2007).

A new strategy to fight antimicrobial resistance:
Fusidic acid

- Derived from the fungus *Fusidium coccineum*, introduced into clinical practice in 1962
- Inhibits polypeptide-chain elongation by binding to the ribosome elongation factor G (EF-G)–GDP complex.
- Excellent oral bioavailability; metabolized in liver
- Mainly bacteriostatic against Gram-positive bacteria, but has bactericidal activity at higher concentrations
- No randomized controlled trials as treatment for BJIs due to MRSA, but several case series have reported its effectiveness, mostly in combination with another oral antibiotic
- Must be used in combination with rifampin or other agents to prevent the emergence of resistance
Something old, something new

• Notably, the three recently approved new antibiotics – linezolid (2000), daptomycin (2003) and retapamulin (2007) – actually belong to chemical classes first reported in 1978, 1987 and 1952, respectively.

Back to the future: breathing new life into old antibiotics to fig...
Linezolid

• A member of a class of chemicals discovered by DuPont in 1970
• Kill bacteria by blocking the production of proteins.
• Early clinical trials revealed the antibiotic produced liver toxicity, and their development was discontinued.
• Twenty years later, a new version of the antibiotic that was no longer toxic was generated, and was effective in treating resistant skin infections and pneumonia, including the superbugs vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA).

Back to the future: breathing new life into old antibiotics to fig...
Daptomycin

- Daptomycin is an antibiotic isolated from a soil bacterium in the early 1980s by Eli Lilly.
- Preliminary studies showed the compound to be highly effective in treating infections, killing bacteria by blocking protein synthesis.
- Due to the presence of mild but reversible side effects, it was also shelved.
- In 1997, Cubist Pharmaceuticals looked more carefully at these side effects.
- By using of a new form of giving the antibiotic (called a dosing regimen), it was able to get a safe drug approval by the United States Food and Drug Administration in 2003.
Retapamulin

• Retapamulin was first isolated in 1952 by members of the New York Botanical Garden.
• It was not suitable to be taken orally (in tablet form) and was shelved.
• Some 25 years later, it was resurrected as a topical preparation for infections such as impetigo.
• It is the first new topical antibiotic to be approved in almost 20 years.
MESSAGE

• Unjustified antibiotic use is a much bigger issue than AIDS and terrorism put together
• Adherence to judicious antibiotic use and infection control measures is, more than ever, an urgent matter
• The consequences can affect all of us and, in fact, we are already feeling its effects.
• *We are hurtling fast into the pre-antibiotic era*
Bad Bugs....
No Drugs!
Thank You!