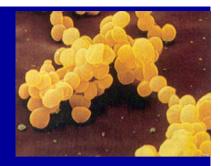
Treating MRSA/MRSE infections in children

Treating MRSA/MRSE infections Thinking inside and outside the box

v Prologue: The genus *Staphylococcus*

* N RSA SE

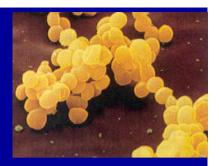
- Recent epidemiology
- Clinical spectrum
- Antibiotic therapy
- **v** Epilogue: Future trends


The genus Staphylococcus

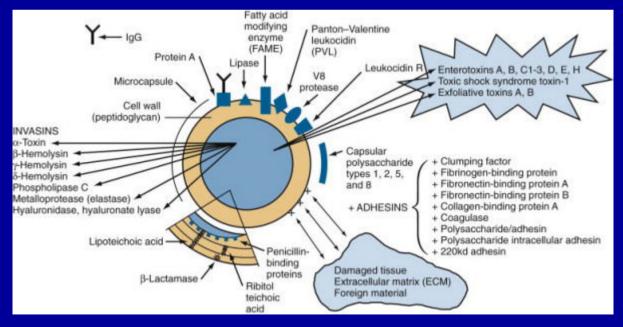
Greek:Staphyle:bunch of grapesKokkos:berry

CoNS, >40spp

Staphylococci



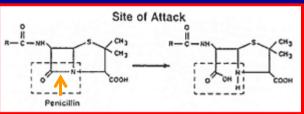
- Widely distributed in nature
- **V** Part of human microbiome (Nature 2013;493:45)
 - **v** SE found universally on skin and frequently in nasopharynx
 - **•** SA carried (30%) on skin (face), nose and fingernails

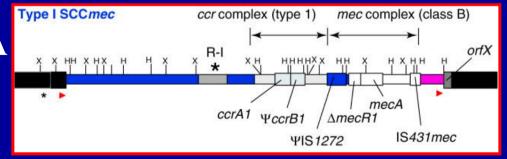

Survive non-physiologic conditions:

- **v** On dried clinical surfaces for months
- Relatively heat-resistant
- V Tolerate high-salt media

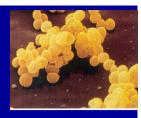
Staphylococcus aureus

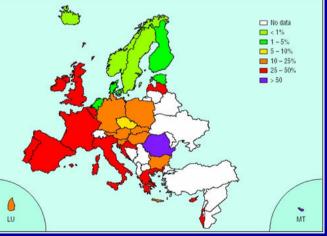
- Is a leading cause of SST, osteoarticular and bloodstream infections worldwide
- Can cause severe lower respiratory infection, TSS and endocarditis
- Virulence is complex, determined by attachment, penetration, evasion-controlled elements and toxins


Evolution of antibiotic therapy of SA



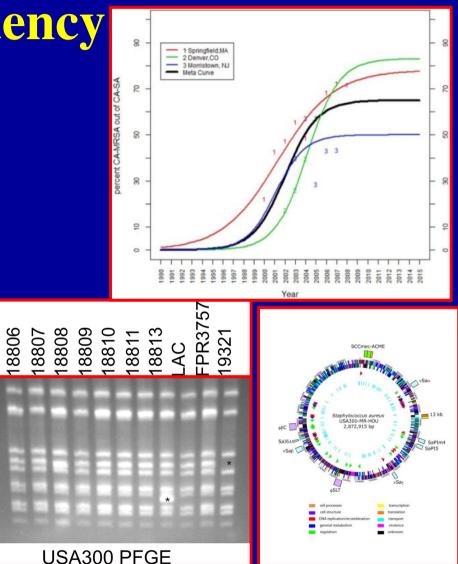
• 1941: Penicillin first successfully used to treat SA infection


v 1950s: Plasmid-mediated β-lactamase


- 1980s: SCC-mediated MRSA
- **2000s: CA-MRSA**
- 2010s: Vancomycin "creep"

Methicillin-resistant S aureus (MRSA)

- Caused by mecA gene-encoding PBP2a with low affinity
- Situated on a mobile genetic element SCCmec, types 1-8; constitutive or inducible
- **v** MRSA are resistant to all β-lactams
- Some SCCmec contain genes encoding resistance to nonβ-lactam antibiotics
- Was typically confined to HCA infections



Community-associated (CA)-MRSA

8805

PLoS One 2013;8:e52722 PIDJ 2013;32:124-8

Increased in the last 10y reaching 80% of all CA-SA
10%-22% carriage
>80% USA300 clone by PFGE

CA-MRSA

PIDJ 2011;30:418-21 PIDJ 2013;32:124-8 Severity – "new" syndromes

Bacteremia & septic shock
Purpura fulminans
Necrotizing pneumonia/empyema
OM-multiple sites, DVT
Pyomyositis
Orbital cellulitis
Necrotizing fasciitis TABLE 5. Hospital course and outcome of children with invasive CA-MRSA and CA-MSSA infection

Outcome	$\begin{array}{l} \text{MRSA} \\ (n = 46) \end{array}$	$\begin{array}{l} \mathbf{MSSA}\\ (n=53) \end{array}$	Р
Cure/improvement Death	45 1	521	NS
Febrile days Mean ± SD Median	$3.93 \pm 4.12 \ 3 (0{-}14)^*$	${\begin{array}{c} 1.81 \pm 1.69 \\ 2 \ (0-6) \end{array}}$	0.07
Hospital days Mean ± SD Median	$\begin{array}{c} 12.02 \pm 7.64 \\ 9 (3 37) \end{array}$	$\begin{array}{c} 9.02\pm 8.54 \\ 7(0{-}44) \end{array}$	0.005
PICU days Mean ± SD Median	n = 8 6.50 ± 4.75 9 (1-15)	n = 3 9 ± 4.36 7 (6-14)	0.49
Days of BC+ Mean ± SD Median	n = 16 3.38 ± 2.45 2 (1-11)	$\begin{array}{l} n = 18 \\ 1.50 \pm 1.04 \\ 1 (1{-}4) \end{array}$	0.04
Days of BC+† Mean ± SD Median	n = 15 2.87 ± 2.45 1 (1-8)	$\begin{array}{l} n = 18 \\ 1.50 \pm 1.04 \\ 1 (1{-}4) \end{array}$	0.084

ST398-MRSA-IV/V

Community-Associated Methicillin-Resistant Staphylococcus aureus Infections in Israel*

Alon Nevet MD PhD¹, Shai Ashkenazi MD MSc^{1,2}, Zmira Samra PhD³ and Gi st1-MRSAT

¹Department of Pediatrics A and ²Unit of Pediatric Infectious Diseases, Schneider Children's Medical Ce (Beilinson Campus), Petah Tikva, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Ramat A

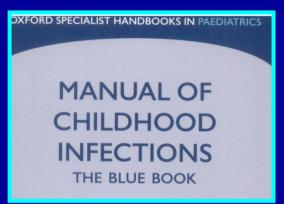
ABSTRACT: Background: Community-associated methicillin-resistant Staphylococcus aureus infections are increasingly being documented worldwide. In Israel. however. CA-MRSA

- European study in 10 countries
- **v** 19 (12%) CA-MRSA of 155 CA-SA
- No significant clinical differences
 between CA-MRSA and CA-MSSA

atal intensive care unit with antibiotic susceptibility pattern imilar to CA-MRSA have been described in Israel [5]. In this ork, we present three children with soft tissue infections aused by CA-MRSA. Our aim was to prompt physicians to e more alert to the possibility of infection with CA-MRSA,

ESPID Annual Meeting June 2012

ST1-MRSA-IV


CA-MRSA Antibiotic susceptibility

- CA-MRSA usually encodes by the small type 4
 SCCmec that doesn't include other resistance genes
- Therefore, usually susceptible to non-β-lactams: clindamycin, T-S, aminoglycosides, tetracyclines, FQ
- In contrast to HA-MRSA
- TCH: clindamycin non-susceptibility of CA-MRSA increased over a decade from 2% to 11%

Treatment of MRSA

Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant *Staphylococcus Aureus* Infections in Adults and Children

CID 2011;52:285-92

Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK

JAC 2006;57:589-608

The principles are similar

Treatment of CA-MRSA

US guidelines - CID 2011;52:285 UK guidelines - JAC 2006;57:589

- 1. <u>No antibiotics</u>: for cutaneous abscess, I&D is the primary treatment and likely to be adequate alone (A2)
 - DB study of T-S vs placebo after I&D with a 90d F/U call. Noninferiority of placebo (Ann Emerg Med 2010;55:401-7)
 - RCT of cephalexin vs clindamycin for uncomplicated SSTIs in 200 children (>6mo), 69% MRSA
 On d7, resolution of MRSA infections: 97% on cephalexin, 94% on clindamycin (Pediatrics 2011;127:e573-80)

Treatment of CA-MRSA

CID 2011;52:285

- 2. Antibiotic therapy is recommended for cutaneous abscesses with the following conditions (A3):
 - Severe local disease (multiple sites, rapidly progressed cellulitis, septic phlebitis)
 - Systemic illness
 - Comorbidities
 - Immunosuppression
 - Difficult to drain sites (face, hands, genitalia)
 - Lack of response to I&D

Treatment of CA-MRSA

CID 2011;52:285

- In hospitalized children with invasive disease, vancomycin is recommended (A2)
- If the patient is stable without ongoing bacteremia or intravascular infections, empiric therapy with IV clindamycin is an option if the clindamycin resistance rate is low (eg <10%), with transition to oral therapy if the strain is susceptible (A2)
- Empiric clindamycin alone?
- "A minimum 3-4 w course is recommended for septic arthritis and a 4-6 w course for OM"
- Shorter courses acceptable (Peltola et al, CID 2011;53:97-8)

Vancomycin is the mainstay of MRSA treatment

...but antibiotic resistance is a moving target

encoded altered peptidoglycans

- ✓ VISA: MIC 4-8 µg/ml, rare, cell wall thickening
- "Creep": The reported trend of increased vancomycin MIC of susceptible MRSA isolates. Affects outcome

Debate: no proven "creep" in children (PIDJ 2010;29:882-4) heteroresistance?

Vancomycin dosage for MRSA

CID 2011;52:285, PIDJ 2013;32:32

- In seriously ill patients with suspected MRSA infections, a loading vancomycin dose of 25-30 mg/kg may be considered (C3)
- **AE**
- For serious infections, vancomycin trough concentrations of 15-20 µg/ml are recommended, which correlates with AUC/MIC >400, PD predicting efficacy (B2)
- Data are limited to guide vancomycin dosing in children. IV vancomycin 60 mg/kg is recommended in children with serious or invasive disease (B3)

Alternative agents

V Teicoplanin (UK, SSTIs, bacteremia) **v** Quinupristin-dalfopristin (synercid) **V** Tigecycline **V** Linezolid **V** Daptomycin **V** Ceftaroline **V** Delafloxacin

JAC 2012;67:2182-90 EJCP 2010;66:919-27 (off-label use in Europe)

Clinical Experience with linezolid in children

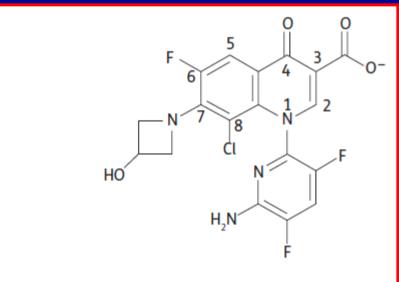
- Vew class (oxazolidinone)
- Broad activity against G(+), including MRSA, MRSE, VRE, PRSP
- **v** 4 uncontrolled and 7 RCTs in children
- Linezolid is safe and efficacious in children with serious G(+) infections
- V The recommended dosage: IV/PO 10mg/kg, tid in children <11y, bid in older (C3)</p>
- "…reserved for children who are intolerant to or fail conventional agents…monitor haematological …and neurological complications" (time-related)

Daptomycin use in children

PIDJ 2007;26:1128-32

- A novel cyclic lipopeptide rapidly bactericidal against MRSA and VRE
- Inactivated by alveolar surfactant; should not be used for pneumonia (approved for bacteremia and SSTIs)
- A series of 15 children at Dallas Children's, with invasive SA infections (8 bacteremia, 12 disseminated, 12 thrombosis)
- 14/15 MRSA, 1 MSSA
- V Dose 4-6mg/kg/d, duration 6-34d (median 10)
- Good clinical response
- Vell tolerated; no CPK elevation

Ceftaroline


PIDJ 4/2011 CID 2011; 55:S173

- ♥ A new "5th-G cephalosporin"
- Approved by the FDA in 10/2010
- For adults with cSSTIs and CAP
- The G(-) activity similar to ceftriaxone; designed to have high affinity for PBP2a, thus is active MRSA, PRSP and most VRE
- Common AEs: diarrhea (5%), nausea (4%), rash (3%)
- Voreal data for children

Delafloxacin

JAC 2013; 2012; 67:2814

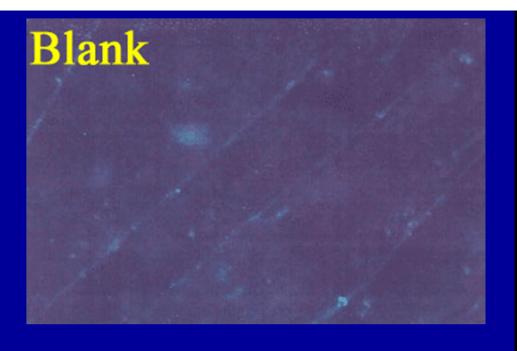
- A Gram positive-oriented FQ with distinct chemical structure
- Dual activity against DNA gyrase and topoisomerase 4
- Active against MRSA, with reduced selection of resistance
- Still investigational

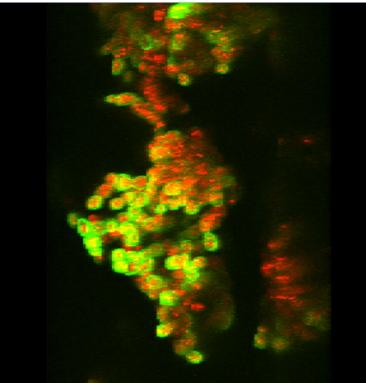
A premature infant with an infection

AL is 26w, 890 gm neonate
2 courses of antibiotics
D1 – ampicillin and gentamicin (RD)
D17 – pip/tazo and amikacin (NEC)
D32 – hypothermia, APBs, reduced perfusion, thrombocytopenia
Vancomycin and meropenem started

A premature infant with an infection

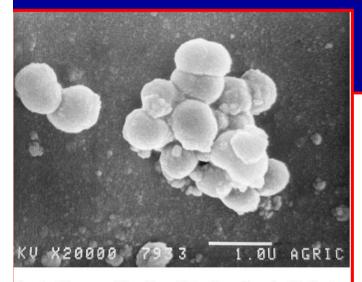
- ♥ D32 2 blood cultures: CoNS
 - Penicillin R
 - Oxacillin R
 - Trime/sulfa R
 - Amox/clav R
 - Ciprofloxacin R
 - Ofloxacin R
 - Gentamicin R
 - Amikacin R
 - Piperac/tazo R

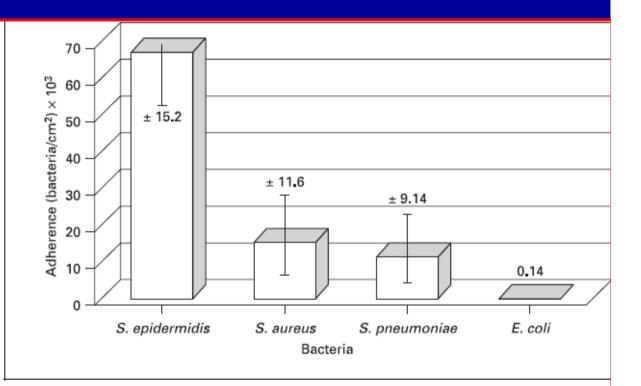

Vancomycin - S Rifampicin - S


Staphylococcus epidermidis

- The main CoNS causing human disease
- Converted from symbiont to a human pathogen, causing clinically-significant infections
- Related mainly to indwelling medical devices, causing hard-to-treat infections: pathogen of modern medicine
- In US: 1M indwelling devices-related nosocomial infections/year

S. epidermidis infections CVC-related infections


1364	ASHKENAZ	ZI AND MIRELMAN			
•••				Bacteria	Adherence (x10 ⁵ /cm ²)
		20.00		S. epidermidis	62.4+/-5.9
A 5KU X4300 , 322	21 I.OU AGRIC	B 5KV X5000 322	3 1.00 AGRIC	S. aureus	38.2+/-4.3
0, "				E. coli	3.7+/-0.4
C 5KV X10000 320	1 OU AGRIC				


A biofilm is an aggregate of microorganisms which adhere to each other on a surface, embedded within a self-produced matrix of extracellular polymeric substance (slime). Quorum sensing: bacterial density-coordinated gene expression, affecting virulence and protective factors

S. epidermidis infections VP shunt infections

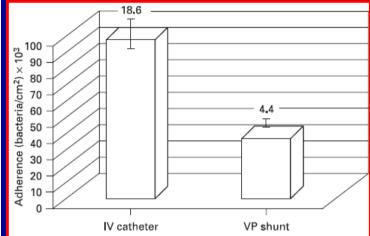


Fig. 2. Adherence of *S. epidermidis* to the surface of a VP shunt as demonstrated by scanning electron microscopy, with formation of a microcolony. $\times 27,000$.

Fig. 3. Association between type of bacteria and adherence to VP shunts. Adherence was examined with a bacterial concentration of 10^{7} /ml and incubation time of 20 min at 37 °C. Data presented as mean ± standard deviation of three determinations.

S. epidermidis infections VP shunt infections

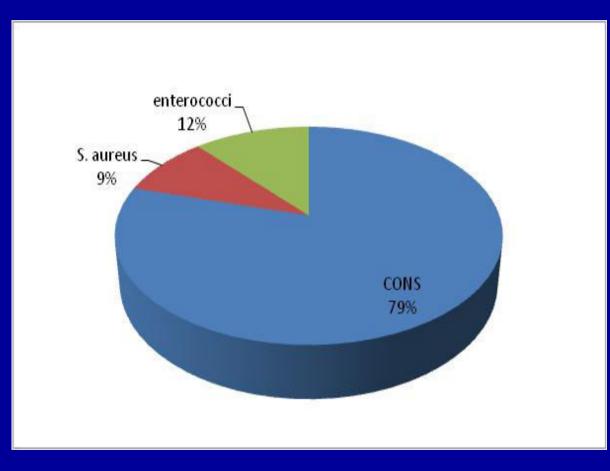
Table 1. Surface hydrophobicity, slime production and adherence of various bacteria to VP shunts in vitro

Bacteria	Hydro- phobicity, %	Slime production	Adherence $(\times 10^{3}/\text{cm}^{2})$
S. epidermidis	64	+	67.66
S. aureus	90	-	15.26
S. pneumoniae	50	-	11.61
E. coli	0	-	0.29

S. epidermidis infections

The Pediatric Infectious Disease Journal

Wolters Kluwer Lippincott Health Williams & Wilkins


ORIGINAL STUDIES

PIDJ 2011; 30:585-90

Healthcare-associated Versus Community-associated Infective Endocarditis in Children

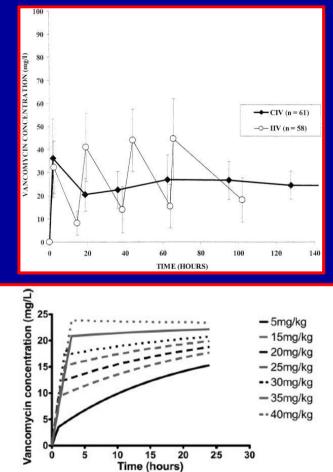
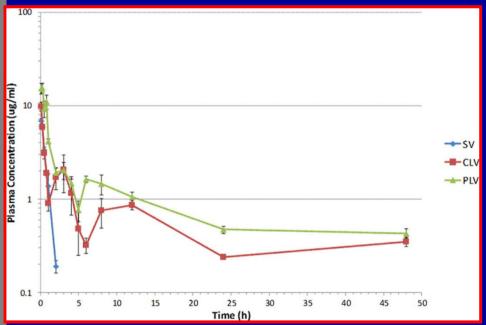
Bacteria	%
CoNS	27%
S. aureus	18%
K. kingae	14%
Enterococcus sp	10%
K. pneumoniae	9%
P. aeruginosa	9%
Viridans strep	4%
Culture-negative	10%

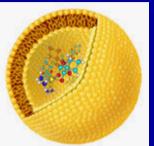
Gram-positive bacteremia at SCMCI, 2012 (N=151)

Vancomycin therapy: thinking outside the box 1. Continuous infusion

Arch Dis Child 2013 JAC 2013;in press

- For bacteria with higher MIC but susceptible.
- Optimize PK/PD, studies in neonates and population PK. Reached target cocent faster with less variability
- A loading dose and CI enable rapid achievement of therapeutic concent
- Optimize bactericidal activity; important in critical patients, clinical outcome studies?


FIG. 2. The effect of loading dose on rapid attainment of target vancomycin concentrations. Different weight-based doses are simulated for a critically ill patient with a creatinine clearance of 100 ml/min/1.73 m², followed by administration as a 35-mg/kg/day continuous infusion.

Vancomycin therapy: thinking outside the box 2. Liposomal vancomycin

AAC 2011; 55:4537 JAC 2013; in press

- Decrease vanco MIC of MRSA by 2-fold
- Decrease toxicity
- Increase uptake by tissue macrophages and enhance intracellular killing of MRSA
- Pegylation increases lung, liver spleen concentrations.
- Proof-of-concept in a murine model

Future trends

Prediction is extremely difficult... especially about the future N. Bohr

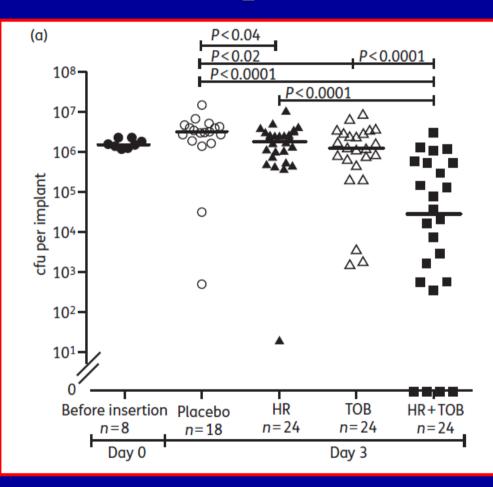
Journal of Paediatrics and Child Health

VIEWPOINT

Beginning and possibly the end of the antibiotic era

Shai Ashkenazi^{1,2,3}

The Future of Antibiotics and Resistance

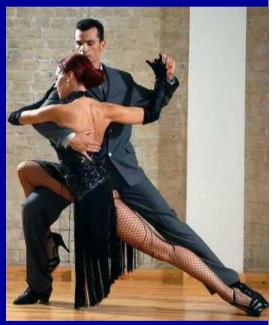

Innovative treatment options of resistant bacteria Beyond antibiotics...

We should be the parents of our future ^{to} ity rather than The offspring of our past

Quorum sensing inhibitors: in vivo proof-of-concept

Christensen et al JAC 2012; 67:1198

A mouse model of intraperitoneal foreign body (biofilm) infection


Innovative treatment options of resistant bacteria Beyond antibiotics...

- Quorum sensing inhibitors
- Vovel immunotherapy: active or passive

Immunotherapy

1. Active "niche" vaccines

- J Bact 2006; 188:8421
- Complicated; SA infection doesn't confer protection against subsequent infections
- Multiple approaches (redundant virulence factors)
- The promising CP5 and 8 conjugated to rEPA (StaphVAX) failed in efficacy study among hemodialysis patients and was halted.
- Staph aureus vaccine: two steps forward and one back..

Immunotherapy

- 2. Passive therapy in vivo proof-of-concept
- Proad anti-sera were used before the antibiotic era
- V Targeted Mabs are currently explored
- poly-N-acetylglucosamine (PNAG): surface PS on MRSA, MRSE, CRE, a major component of biofilms
- Vatural abs to PNAG are not protective
- Human Mabs to deacetylated PNAG (F598) mediate opsonic killing
- Protected mice
- A human phase 2 study

Journal of Antimicrobial Chemotherapy

ABOUT THIS JOURNAL CONTACT THIS JOURNAL SUBSCRIPTIONS Institution: The David J. Light Law Library, Tel Aviv University Sign In as Oxford Journals > Medicine > Journal of Antimicrobial Chemotherapy > Volume 67, Is

Magic bullets for the 21st century: the reemergence of immunotherapy for multi- and pan-resistant microbes

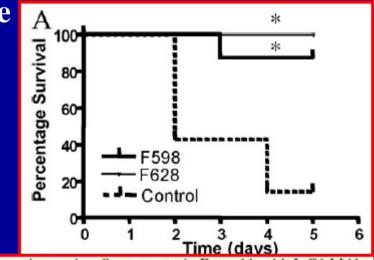


FIG. 6. Protection against S. aureus strain Reynolds with IgG1 MAbs

Innovative treatment options of resistant bacteria Beyond antibiotics...

- **v** Quorum sensing inhibitors
- Vovel immunotherapy
- **Vovel** immunomodulators (cytokine agonists or antagonists)
- V Inhibit toxin production
- V Inhibit bacterial adherence
- V Targeted bacteriophages
- Translation interference
- Synthetic biology with engineered bacteria

Thank You for the attention

Antibiotic resistance is a moving target: new resistance mechanism of MRSA?

- **2 MRSA isolates from a 12-yo child with osteomyelitis** \bullet
- **Both PVL+, SCCmec type 4, identical on PFGE** \mathbf{O}
- Similar antibiograms, except for amikacin (MIC 64 vs 8 mcg/ml) ightarrow
- **Developed adaptive resistance with altered growth curve and** \mathbf{O} thicker cell wall (36 vs 18 nm).
- Induced in vitro by amikacin •

